Good Lie Brackets for classical and quantum harmonic oscillators

IF 2.5 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Andrei Agrachev , Bettina Kazandjian , Eugenio Pozzoli
{"title":"Good Lie Brackets for classical and quantum harmonic oscillators","authors":"Andrei Agrachev ,&nbsp;Bettina Kazandjian ,&nbsp;Eugenio Pozzoli","doi":"10.1016/j.sysconle.2025.106233","DOIUrl":null,"url":null,"abstract":"<div><div>We study the small-time controllability problem on the Lie groups <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>⋉</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> with Lie bracket methods (here <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> denotes the <span><math><mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional real Heisenberg group). Then, using unitary representations of <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>⋉</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> on <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><mi>r</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span>, we recover small-time reachability properties of the Schrödinger PDE for the quantum harmonic oscillator, and find new small-time reachability properties of the Liouville PDE for the classical harmonic oscillator.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"205 ","pages":"Article 106233"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125002154","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the small-time controllability problem on the Lie groups SL2(R) and SL2(R)Hd(R) with Lie bracket methods (here Hd(R) denotes the (2d+1)-dimensional real Heisenberg group). Then, using unitary representations of SL2(R)Hd(R) on L2(Rd,) and Lr(TRd,R),r[1,], we recover small-time reachability properties of the Schrödinger PDE for the quantum harmonic oscillator, and find new small-time reachability properties of the Liouville PDE for the classical harmonic oscillator.
经典谐振子和量子谐振子的Good Lie托架
利用李括号方法研究了李群SL2(R)和SL2(R) × Hd(R)上的小时可控性问题(这里Hd(R)表示(2d+1)维实数Heisenberg群)。然后,利用SL2(R) Hd(R)在L2(Rd,)和Lr(T * Rd,R), R∈[1,∞]上的幺正表示,我们恢复了量子谐振子Schrödinger PDE的小时可达性,并找到了经典谐振子Liouville PDE的新的小时可达性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信