Andrei Agrachev , Bettina Kazandjian , Eugenio Pozzoli
{"title":"Good Lie Brackets for classical and quantum harmonic oscillators","authors":"Andrei Agrachev , Bettina Kazandjian , Eugenio Pozzoli","doi":"10.1016/j.sysconle.2025.106233","DOIUrl":null,"url":null,"abstract":"<div><div>We study the small-time controllability problem on the Lie groups <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>⋉</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> with Lie bracket methods (here <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> denotes the <span><math><mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional real Heisenberg group). Then, using unitary representations of <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>⋉</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> on <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><mi>r</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span>, we recover small-time reachability properties of the Schrödinger PDE for the quantum harmonic oscillator, and find new small-time reachability properties of the Liouville PDE for the classical harmonic oscillator.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"205 ","pages":"Article 106233"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125002154","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the small-time controllability problem on the Lie groups and with Lie bracket methods (here denotes the -dimensional real Heisenberg group). Then, using unitary representations of on and , we recover small-time reachability properties of the Schrödinger PDE for the quantum harmonic oscillator, and find new small-time reachability properties of the Liouville PDE for the classical harmonic oscillator.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.