TPMS-based PLA/PETG interpenetrating composites: The synergistic enhancement of mechanical properties for bone implant

IF 7.1 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Chenyu Wang , Haowen Xue , Qian Wan , Bin Zhou , Xingchen Guo , Yue Lu , Qing Han , Hao Chen , Jincheng Wang
{"title":"TPMS-based PLA/PETG interpenetrating composites: The synergistic enhancement of mechanical properties for bone implant","authors":"Chenyu Wang ,&nbsp;Haowen Xue ,&nbsp;Qian Wan ,&nbsp;Bin Zhou ,&nbsp;Xingchen Guo ,&nbsp;Yue Lu ,&nbsp;Qing Han ,&nbsp;Hao Chen ,&nbsp;Jincheng Wang","doi":"10.1016/j.compstruct.2025.119644","DOIUrl":null,"url":null,"abstract":"<div><div>Maxillofacial bone repair demands implants that match native mechanics, yet conventional designs struggle to balance strength and toughness. We present an interpenetrating phase composite (IPC) that couples a PLA lattice with a PETG network, printed via multimaterial FDM into P-type TPMS architectures with offset thickness d = 0.4–1.2 mm. The IPC shows a synergistic “1 + 1 &gt; 2” effect: versus porous PLA, compressive strength increases by 153–244 %. Finite-element analysis reveals more uniform stress fields and delayed local buckling under compression. A modified dual-phase Gibson–Ashby model predicts elastic modulus and yield strength across densities and compositions, with good agreement to experiments. Calcein-AM/PI and CCK-8 assays indicate high cell viability and negligible cytotoxicity. ALP activity and Alizarin Red staining support preserved osteogenic potential, while short-term subcutaneous implantation demonstrates favorable tissue responses with neovascularization and collagen remodeling. Simulated body-fluid immersion shows composition-dependent, predictable hydrolytic behavior. Collectively, the rigid–flexible coupling of PLA/PETG IPC TPMS structures yields concurrent gains in strength, toughness, and energy absorption with reassuring biosafety, positioning this platform as a promising option for load-bearing, patient-specific craniofacial implants and offering a practical framework for performance prediction and design optimization.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"373 ","pages":"Article 119644"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325008098","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Maxillofacial bone repair demands implants that match native mechanics, yet conventional designs struggle to balance strength and toughness. We present an interpenetrating phase composite (IPC) that couples a PLA lattice with a PETG network, printed via multimaterial FDM into P-type TPMS architectures with offset thickness d = 0.4–1.2 mm. The IPC shows a synergistic “1 + 1 > 2” effect: versus porous PLA, compressive strength increases by 153–244 %. Finite-element analysis reveals more uniform stress fields and delayed local buckling under compression. A modified dual-phase Gibson–Ashby model predicts elastic modulus and yield strength across densities and compositions, with good agreement to experiments. Calcein-AM/PI and CCK-8 assays indicate high cell viability and negligible cytotoxicity. ALP activity and Alizarin Red staining support preserved osteogenic potential, while short-term subcutaneous implantation demonstrates favorable tissue responses with neovascularization and collagen remodeling. Simulated body-fluid immersion shows composition-dependent, predictable hydrolytic behavior. Collectively, the rigid–flexible coupling of PLA/PETG IPC TPMS structures yields concurrent gains in strength, toughness, and energy absorption with reassuring biosafety, positioning this platform as a promising option for load-bearing, patient-specific craniofacial implants and offering a practical framework for performance prediction and design optimization.
基于tpms的PLA/PETG互穿复合材料:骨种植体力学性能的协同增强
颌面骨修复要求植入物与自然力学相匹配,但传统的设计难以平衡强度和韧性。我们提出了一种互穿相复合材料(IPC),它将PLA晶格与PETG网络耦合,通过多材料FDM打印成偏移厚度d = 0.4-1.2 mm的p型TPMS结构。IPC表现出协同的“1 + 1 > 2”效应:与多孔PLA相比,抗压强度提高了153 - 244%。有限元分析表明,在压缩作用下,应力场更加均匀,局部屈曲延迟。改进的双相Gibson-Ashby模型预测了不同密度和成分的弹性模量和屈服强度,与实验结果吻合良好。Calcein-AM/PI和CCK-8检测显示细胞活力高,细胞毒性可忽略不计。ALP活性和茜素红染色支持保留成骨潜能,而短期皮下植入显示出良好的组织反应,包括新生血管和胶原重塑。模拟的体液浸泡显示了成分依赖的、可预测的水解行为。总的来说,PLA/PETG IPC TPMS结构的刚柔耦合在强度、韧性和能量吸收方面同时获得增益,同时具有可靠的生物安全性,使该平台成为承载、患者特异性颅面植入物的有前途的选择,并为性能预测和设计优化提供了实用的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信