Impact of high temperature and pressure on the structure and phase transition of Mg2SiO4 oxide via molecular dynamics simulation

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Dung Nguyen Trong , Tuan Tran Quoc , Ştefan Ţălu
{"title":"Impact of high temperature and pressure on the structure and phase transition of Mg2SiO4 oxide via molecular dynamics simulation","authors":"Dung Nguyen Trong ,&nbsp;Tuan Tran Quoc ,&nbsp;Ştefan Ţălu","doi":"10.1016/j.physb.2025.417784","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the effects of high temperature and high pressure (P) on the structure and phase transition process of Mg<sub>2</sub>SiO<sub>4</sub> oxide using molecular dynamics simulations with Oganov's pair interaction potential. The study reveals that as the temperature increases from 300 K to 6000 K, Mg<sub>2</sub>SiO<sub>4</sub> transitions from an amorphous state to a liquid state. This transition is accompanied by an increase in lengths of the links (Mg-Mg, Mg-Si, Mg-O, Si-Si, Si-O, O-O) and changes in the numbers of structural units (SiO<sub>4</sub>, SiO<sub>5</sub>, SiO<sub>6</sub>, MgO<sub>3</sub>, MgO<sub>4</sub>, MgO<sub>5</sub>, MgO<sub>6</sub>). While the total system size and total energy of systems increase, the bond angles of Si-O-Si and Mg-O-Mg remain relatively stable under 0 GPa. The phase transition temperature (T<sub>m</sub>) of Mg<sub>2</sub>SiO<sub>4</sub> is determined to be 2168 K. Furthermore, varying P from 0 to 200 GPa at temperatures of 300, 1000, 2000, 4000, and 6000 K reveals a relationship between temperature and pressure. At 300 K, the system can withstand a maximum pressure of 200 GPa, while at 6000 K, the minimum pressure is 0 GPa. These findings provide valuable insights for future experimental research and contribute to the development of high-performance materials for applications in the communications industry.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417784"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009019","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the effects of high temperature and high pressure (P) on the structure and phase transition process of Mg2SiO4 oxide using molecular dynamics simulations with Oganov's pair interaction potential. The study reveals that as the temperature increases from 300 K to 6000 K, Mg2SiO4 transitions from an amorphous state to a liquid state. This transition is accompanied by an increase in lengths of the links (Mg-Mg, Mg-Si, Mg-O, Si-Si, Si-O, O-O) and changes in the numbers of structural units (SiO4, SiO5, SiO6, MgO3, MgO4, MgO5, MgO6). While the total system size and total energy of systems increase, the bond angles of Si-O-Si and Mg-O-Mg remain relatively stable under 0 GPa. The phase transition temperature (Tm) of Mg2SiO4 is determined to be 2168 K. Furthermore, varying P from 0 to 200 GPa at temperatures of 300, 1000, 2000, 4000, and 6000 K reveals a relationship between temperature and pressure. At 300 K, the system can withstand a maximum pressure of 200 GPa, while at 6000 K, the minimum pressure is 0 GPa. These findings provide valuable insights for future experimental research and contribute to the development of high-performance materials for applications in the communications industry.
高温高压对Mg2SiO4氧化物结构和相变的影响
本文利用Oganov对相互作用势进行分子动力学模拟,研究了高温高压对Mg2SiO4氧化物结构和相变过程的影响。研究表明,当温度从300 K升高到6000 K时,Mg2SiO4由非晶态转变为液态。这种转变伴随着链接长度的增加(Mg-Mg、Mg-Si、Mg-O、Si-Si、Si-O、O-O)和结构单元数量的变化(SiO4、SiO5、SiO6、MgO3、MgO4、MgO5、MgO6)。随着体系总尺寸和总能量的增加,Si-O-Si和Mg-O-Mg的键角在0 GPa下保持相对稳定。Mg2SiO4的相变温度(Tm)为2168 K。此外,在300、1000、2000、4000和6000 K的温度下,P从0到200 GPa的变化揭示了温度和压力之间的关系。在300 K时,系统可承受的最大压力为200 GPa,而在6000 K时,系统的最小压力为0 GPa。这些发现为未来的实验研究提供了有价值的见解,并有助于开发用于通信行业的高性能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信