One-pot hydrothermal synthesis of nickel sulfide/oxide heterostructures for a sustainable water splitting electrocatalyst

IF 5.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dina Hajjar , Mohamed Khairy
{"title":"One-pot hydrothermal synthesis of nickel sulfide/oxide heterostructures for a sustainable water splitting electrocatalyst","authors":"Dina Hajjar ,&nbsp;Mohamed Khairy","doi":"10.1016/j.materresbull.2025.113773","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient and cost-effective electrocatalysts are essential for advancing water-splitting technologies, leading to sustainable hydrogen production. Herein, we have synthesized NiS/NiO heterostructures assembled on a nickel foam platform (NF-NiS/NiO) <em>via</em> a one-pot hydrothermal approach and explored for overall water splitting in an alkaline condition. A hierarchical NiS/NiO interface with interconnected ultrathin nanosheets was engineered within an extended porous network. Binder-free NF-NiS/NiO electrode exhibited overpotentials (η) of 220 mV and 112 mV to deliver 10 mA/cm² for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with Tafel slopes of 130 mV/dec and 87 mV/dec, respectively. The superior electrocatalytic activity is attributed to the synergistic effects of NiS and NiO nanocrystals, which enhance active site availability, facilitate charge transfer, and provide long-term stability over 40 h. Economical synthesis of NF–NiS/NiO hetero-nanostructures offers a stable, efficient, and scalable bifunctional electrode platform for sustainable water-splitting.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"194 ","pages":"Article 113773"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825004805","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and cost-effective electrocatalysts are essential for advancing water-splitting technologies, leading to sustainable hydrogen production. Herein, we have synthesized NiS/NiO heterostructures assembled on a nickel foam platform (NF-NiS/NiO) via a one-pot hydrothermal approach and explored for overall water splitting in an alkaline condition. A hierarchical NiS/NiO interface with interconnected ultrathin nanosheets was engineered within an extended porous network. Binder-free NF-NiS/NiO electrode exhibited overpotentials (η) of 220 mV and 112 mV to deliver 10 mA/cm² for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with Tafel slopes of 130 mV/dec and 87 mV/dec, respectively. The superior electrocatalytic activity is attributed to the synergistic effects of NiS and NiO nanocrystals, which enhance active site availability, facilitate charge transfer, and provide long-term stability over 40 h. Economical synthesis of NF–NiS/NiO hetero-nanostructures offers a stable, efficient, and scalable bifunctional electrode platform for sustainable water-splitting.

Abstract Image

一锅水热合成硫化镍/氧化物异质结构的可持续水裂解电催化剂
高效且具有成本效益的电催化剂对于推进水分解技术至关重要,从而实现可持续的氢气生产。本文通过一锅水热法合成了在泡沫镍平台上组装的NiS/NiO异质结构(NF-NiS/NiO),并探索了在碱性条件下的整体水裂解。在扩展的多孔网络中设计了具有互连超薄纳米片的层次化NiS/NiO接口。无粘合剂的NF-NiS/NiO电极的过电位(η)为220 mV和112 mV,输出10 mA/cm²的析氧反应(OER)和析氢反应(HER), Tafel斜率分别为130 mV/dec和87 mV/dec。优异的电催化活性归因于NiS和NiO纳米晶体的协同作用,这提高了活性位点的可用性,促进了电荷转移,并提供了超过40小时的长期稳定性。经济合成NF-NiS /NiO异质纳米结构为可持续的水分解提供了一个稳定、高效、可扩展的双功能电极平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信