{"title":"Is the CncC/Keap1 complex a major factor in conferring pesticide resistance in arthropods? - A critical review","authors":"Dries Amezian, Thomas Van Leeuwen","doi":"10.1016/j.ibmb.2025.104400","DOIUrl":null,"url":null,"abstract":"<div><div>The CncC/Keap1 signalling pathway regulates antioxidant and detoxification gene expression in arthropods and is frequently associated with metabolic insecticide resistance. This review critically assesses evidence for its role in resistance phenotypes across key pest species. Although overactivation of CncC/Keap1 correlates with increased detoxification enzyme expression and pesticide tolerance, causal mutations in the coding or regulatory regions of <em>CncC</em>, <em>Keap1</em>, or <em>Maf</em> remain unidentified. We evaluate the evidence supporting the role of CncC/Keap1 in pesticide resistance in insects and mites and report the latest advancements in our understanding of this system in arthropods. We further highlight the need for unbiased genetic mapping and reverse genetic approaches to resolve the mechanisms of constitutive CncC activation in resistant populations. Understanding these mechanisms is crucial for elucidating the origins of metabolic resistance and developing sustainable pest management strategies.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"184 ","pages":"Article 104400"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174825001444","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The CncC/Keap1 signalling pathway regulates antioxidant and detoxification gene expression in arthropods and is frequently associated with metabolic insecticide resistance. This review critically assesses evidence for its role in resistance phenotypes across key pest species. Although overactivation of CncC/Keap1 correlates with increased detoxification enzyme expression and pesticide tolerance, causal mutations in the coding or regulatory regions of CncC, Keap1, or Maf remain unidentified. We evaluate the evidence supporting the role of CncC/Keap1 in pesticide resistance in insects and mites and report the latest advancements in our understanding of this system in arthropods. We further highlight the need for unbiased genetic mapping and reverse genetic approaches to resolve the mechanisms of constitutive CncC activation in resistant populations. Understanding these mechanisms is crucial for elucidating the origins of metabolic resistance and developing sustainable pest management strategies.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.