Scalable hard carbon production for sodium-ion batteries: Integrated precursor selection, thermochemical conversion, and tandem processing

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jian Yin , Danfeng Li , Chen Yang , Hu Zhang , Ruiyao Wu , Rutong Yang , Anjie Liu , Feng Yu , Jiao Yin , Hui Zhu
{"title":"Scalable hard carbon production for sodium-ion batteries: Integrated precursor selection, thermochemical conversion, and tandem processing","authors":"Jian Yin ,&nbsp;Danfeng Li ,&nbsp;Chen Yang ,&nbsp;Hu Zhang ,&nbsp;Ruiyao Wu ,&nbsp;Rutong Yang ,&nbsp;Anjie Liu ,&nbsp;Feng Yu ,&nbsp;Jiao Yin ,&nbsp;Hui Zhu","doi":"10.1016/j.mser.2025.101094","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium-ion battery has been widely regarded as a cost effective and scalable solution for short/medium-term energy storage, where hard carbon anode serves as a crucial role in determining the energy density and charging rate of full-cell device. To date, most studies have focused on the synthesis strategies and performance of hard carbons at laboratory scale, while few reports address the industrial production processes from the perspective of thermochemical transformation and carbon structure evolution. Herein, we evaluate research and development strategies of hard carbons from the viewpoint of processing operation and industrial production, mainly including precursor selection, pretreatment, carbonization, and post treatment. Notably, thermochemical transformation and engineering are highlighted as a key part to tailor carbon skeleton for Na-ion storage. Finally, challenges in large-scale production and future research directions are outlined for hard carbon enhancement and Na-ion full-cell development.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"167 ","pages":"Article 101094"},"PeriodicalIF":31.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X2500172X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion battery has been widely regarded as a cost effective and scalable solution for short/medium-term energy storage, where hard carbon anode serves as a crucial role in determining the energy density and charging rate of full-cell device. To date, most studies have focused on the synthesis strategies and performance of hard carbons at laboratory scale, while few reports address the industrial production processes from the perspective of thermochemical transformation and carbon structure evolution. Herein, we evaluate research and development strategies of hard carbons from the viewpoint of processing operation and industrial production, mainly including precursor selection, pretreatment, carbonization, and post treatment. Notably, thermochemical transformation and engineering are highlighted as a key part to tailor carbon skeleton for Na-ion storage. Finally, challenges in large-scale production and future research directions are outlined for hard carbon enhancement and Na-ion full-cell development.
钠离子电池的可扩展硬碳生产:集成前驱体选择,热化学转化和串联处理
钠离子电池已被广泛认为是一种具有成本效益和可扩展性的中短期储能解决方案,其中硬碳阳极在决定全电池装置的能量密度和充电速率方面起着至关重要的作用。迄今为止,大多数研究都集中在实验室规模的硬碳合成策略和性能上,而从热化学转化和碳结构演化的角度研究工业生产过程的报道很少。本文从加工操作和工业生产的角度对硬炭的研发策略进行了评价,主要包括前驱体的选择、预处理、炭化和后处理。值得注意的是,热化学转化和工程是定制na离子存储碳骨架的关键部分。最后,展望了硬碳增强和钠离子全电池的大规模生产面临的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信