Thermal evolution and hydrocarbon generation of organic matter in shales via sequential high-pressure hydrous pyrolysis: Implications for in-situ conversion of unconventional resource
Fengtian Bai , Clement N. Uguna , Will Meredith , Colin E. Snape , Christopher H. Vane , Chenggong Sun
{"title":"Thermal evolution and hydrocarbon generation of organic matter in shales via sequential high-pressure hydrous pyrolysis: Implications for in-situ conversion of unconventional resource","authors":"Fengtian Bai , Clement N. Uguna , Will Meredith , Colin E. Snape , Christopher H. Vane , Chenggong Sun","doi":"10.1016/j.fuproc.2025.108327","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding kerogen transformation under geological conditions is critical for optimizing the in-situ conversion (ISC) process of organic-rich unconventional resources. Sequential high-pressure hydrous pyrolysis was employed to investigate the geological thermal evolution and hydrocarbon generation mechanisms of organic matter in immature Huadian (Type II<sub>1</sub> kerogen) and Fushun (Type I kerogen) shales. Experiments progressed through four thermal stages, that is Stage 1 (350 °C, 6 h), Stage 2 (350 °C, 24 h), Stage 3 (380 °C, 24 h), and Stage 4 (420 °C, 24 h), with comprehensive analysis of hydrocarbon products by gas-chromatography mass-spectrometry and solid residues by vitrinite reflectance (Ro) and Rock-Eval pyrolysis. The results revealed that the hydrocarbon-generation potential of these two shales declined sharply with a Ro of 0.78–1.23 %, correlating with peak oil generation. Type I kerogen (Fushun) exhibited higher reactivity, generating twice the cumulative oil yield (normalized by TOC) compared to Type II<sub>1</sub> (Huadian) and transitioning earlier to oil dominance. Biomarker evolution (OEP decline, sterane/hopane isomerization) in expelled oil and declining gas dryness index (C<sub>1</sub>/ΣC<sub>1</sub>–C<sub>5</sub>) correlated strongly with the maturity of organic matter, enabling non-destructive ISC monitoring. Compared to typical temperatures used in ex-situ retorting (520 °C), the kerogen conversion was completed at lower temperatures of 350–420 °C in this study, validating prolonged heating as a viable low-energy ISC strategy. However, high-pressure conditions in geological formations may impede hydrocarbon expulsion efficiency, leading to the retention of viscous bitumen and thus necessitating engineered solutions for effective oil recovery. This research enriches the understanding of high-pressure pyrolysis mechanisms of immature/low-maturity unconventional resources and establishes a geochemical framework for optimizing ISC in recovering the oil from these source rocks, ultimately contributing to advancing sustainable exploitation of unconventional resources.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"278 ","pages":"Article 108327"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025001511","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding kerogen transformation under geological conditions is critical for optimizing the in-situ conversion (ISC) process of organic-rich unconventional resources. Sequential high-pressure hydrous pyrolysis was employed to investigate the geological thermal evolution and hydrocarbon generation mechanisms of organic matter in immature Huadian (Type II1 kerogen) and Fushun (Type I kerogen) shales. Experiments progressed through four thermal stages, that is Stage 1 (350 °C, 6 h), Stage 2 (350 °C, 24 h), Stage 3 (380 °C, 24 h), and Stage 4 (420 °C, 24 h), with comprehensive analysis of hydrocarbon products by gas-chromatography mass-spectrometry and solid residues by vitrinite reflectance (Ro) and Rock-Eval pyrolysis. The results revealed that the hydrocarbon-generation potential of these two shales declined sharply with a Ro of 0.78–1.23 %, correlating with peak oil generation. Type I kerogen (Fushun) exhibited higher reactivity, generating twice the cumulative oil yield (normalized by TOC) compared to Type II1 (Huadian) and transitioning earlier to oil dominance. Biomarker evolution (OEP decline, sterane/hopane isomerization) in expelled oil and declining gas dryness index (C1/ΣC1–C5) correlated strongly with the maturity of organic matter, enabling non-destructive ISC monitoring. Compared to typical temperatures used in ex-situ retorting (520 °C), the kerogen conversion was completed at lower temperatures of 350–420 °C in this study, validating prolonged heating as a viable low-energy ISC strategy. However, high-pressure conditions in geological formations may impede hydrocarbon expulsion efficiency, leading to the retention of viscous bitumen and thus necessitating engineered solutions for effective oil recovery. This research enriches the understanding of high-pressure pyrolysis mechanisms of immature/low-maturity unconventional resources and establishes a geochemical framework for optimizing ISC in recovering the oil from these source rocks, ultimately contributing to advancing sustainable exploitation of unconventional resources.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.