Exploring solitary wave structures and bifurcation dynamics in the (2+1)-dimensional generalized Hietarinta equation

Q1 Mathematics
Yeşim Sağlam Özkan , Esra Ünal Yılmaz
{"title":"Exploring solitary wave structures and bifurcation dynamics in the (2+1)-dimensional generalized Hietarinta equation","authors":"Yeşim Sağlam Özkan ,&nbsp;Esra Ünal Yılmaz","doi":"10.1016/j.padiff.2025.101283","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional generalized Hietarinta equation, which models the propagation of waves on water surfaces in the presence of gravity and surface tension. Solitary wave solutions are obtained using the <span><math><mrow><mi>e</mi><mi>x</mi><mi>p</mi><mrow><mo>(</mo><mo>−</mo><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> method and the <span><math><mi>F</mi></math></span>-expansion method, and are expressed in terms of hyperbolic, trigonometric, exponential and rational functions. Two- and three-dimensional plots illustrate various wave structures, such as dark, kinked, and singular kinked waves, highlighting their dynamic behaviors under different parameter settings. Hamiltonian functions and bifurcation theory are employed to analyze phase portraits and nonlinear wave dynamics, including chaotic behavior. Numerical simulations has been conducted using Mathematica and Maple confirm the theoretical findings. Additionally, the results have been compared with other existing results in the literature to show their uniqueness. The proposed techniques are effective, computationally efficient and reliable. In this context, considering previous studies, the findings of this research contribute to the existing literature.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"16 ","pages":"Article 101283"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the (2+1)-dimensional generalized Hietarinta equation, which models the propagation of waves on water surfaces in the presence of gravity and surface tension. Solitary wave solutions are obtained using the exp(w(x)) method and the F-expansion method, and are expressed in terms of hyperbolic, trigonometric, exponential and rational functions. Two- and three-dimensional plots illustrate various wave structures, such as dark, kinked, and singular kinked waves, highlighting their dynamic behaviors under different parameter settings. Hamiltonian functions and bifurcation theory are employed to analyze phase portraits and nonlinear wave dynamics, including chaotic behavior. Numerical simulations has been conducted using Mathematica and Maple confirm the theoretical findings. Additionally, the results have been compared with other existing results in the literature to show their uniqueness. The proposed techniques are effective, computationally efficient and reliable. In this context, considering previous studies, the findings of this research contribute to the existing literature.
探索(2+1)维广义Hietarinta方程中的孤波结构和分岔动力学
本文研究了(2+1)维广义Hietarinta方程,该方程模拟了重力和表面张力作用下波浪在水面上的传播。用exp(- w(x))法和f展开法得到了孤波解,并以双曲函数、三角函数、指数函数和有理函数表示。二维和三维图形分别描绘了暗波、扭结波和奇异扭结波等不同的波浪结构,突出了它们在不同参数设置下的动力学行为。利用哈密顿函数和分岔理论分析了相图和非线性波动动力学,包括混沌行为。使用Mathematica和Maple进行的数值模拟证实了理论发现。并将结果与文献中已有的结果进行了比较,以显示其独特性。所提出的技术是有效的,计算效率高,可靠的。在此背景下,考虑到以往的研究,本研究的发现有助于现有文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信