Deep learning and information fusion for structure property analysis in adhesive joints

IF 7 Q2 MATERIALS SCIENCE, COMPOSITES
Umut Bakhbergen , Ahmed Maged , Fethi Abbassi , Reza Montazami , Sherif Araby
{"title":"Deep learning and information fusion for structure property analysis in adhesive joints","authors":"Umut Bakhbergen ,&nbsp;Ahmed Maged ,&nbsp;Fethi Abbassi ,&nbsp;Reza Montazami ,&nbsp;Sherif Araby","doi":"10.1016/j.jcomc.2025.100645","DOIUrl":null,"url":null,"abstract":"<div><div>Interfacial adhesion is a pivotal factor in determining the overall strength and durability of composite structures across aerospace and automotive industries. Therefore, understanding the failure modes and crack propagation paths in interface-based composites underpins the service life of bulk structure. This study employs deep learning and information fusion techniques to automate structure-property analysis in adhesive joints. First, response surface methodology (RSM) is used to design experimental matrix for anodizing adherend surfaces (aluminium sheets); the control parameters are concentration, current and time. Surface topography is characterized by surface roughness and contact angle along with scanning electron microscopy (SEM) images. Interfacial strength of anodized aluminium-polyurethane (Al-PU) adhesive joints is measured, and fracture analysis is performed <em>via</em> SEM. Experimental results demonstrated that anodizing conditions – concentration 0.5 M H<sub>2</sub>SO<sub>4</sub> concentration, 1.5 A current and 45 min anodizing duration– enhanced the interfacial shear strength by up to 920% compared to untreated joints. Second, a novel information fusion approach is employed; the model integrates features extracted from SEM images using ResNet with numerical data from the RSM’s matrix. The combined representation is fed into an XGBoost model which enables robust material property analysis and regression. Feature-importance analysis <em>via</em> XGBoost and Integrated Gradients provide valuable insights into how anodizing parameters and surface features affect joint strength. Through the combination of numerical data (anodizing conditions and surface topographical features) and surface and fracture image analysis, the model significantly reduced the mean absolute percentage error from 18.8% to 10.7%. The findings highlight the pivotal role of integrating quantitative and qualitative information of structural materials to develop a robust and an accurate machine learning model.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"18 ","pages":"Article 100645"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial adhesion is a pivotal factor in determining the overall strength and durability of composite structures across aerospace and automotive industries. Therefore, understanding the failure modes and crack propagation paths in interface-based composites underpins the service life of bulk structure. This study employs deep learning and information fusion techniques to automate structure-property analysis in adhesive joints. First, response surface methodology (RSM) is used to design experimental matrix for anodizing adherend surfaces (aluminium sheets); the control parameters are concentration, current and time. Surface topography is characterized by surface roughness and contact angle along with scanning electron microscopy (SEM) images. Interfacial strength of anodized aluminium-polyurethane (Al-PU) adhesive joints is measured, and fracture analysis is performed via SEM. Experimental results demonstrated that anodizing conditions – concentration 0.5 M H2SO4 concentration, 1.5 A current and 45 min anodizing duration– enhanced the interfacial shear strength by up to 920% compared to untreated joints. Second, a novel information fusion approach is employed; the model integrates features extracted from SEM images using ResNet with numerical data from the RSM’s matrix. The combined representation is fed into an XGBoost model which enables robust material property analysis and regression. Feature-importance analysis via XGBoost and Integrated Gradients provide valuable insights into how anodizing parameters and surface features affect joint strength. Through the combination of numerical data (anodizing conditions and surface topographical features) and surface and fracture image analysis, the model significantly reduced the mean absolute percentage error from 18.8% to 10.7%. The findings highlight the pivotal role of integrating quantitative and qualitative information of structural materials to develop a robust and an accurate machine learning model.

Abstract Image

基于深度学习和信息融合的粘接接头结构性能分析
界面附着力是决定航空航天和汽车行业复合材料结构整体强度和耐久性的关键因素。因此,了解基于界面的复合材料的破坏模式和裂纹扩展路径是提高体结构使用寿命的基础。本研究采用深度学习和信息融合技术实现粘接接头结构性能分析的自动化。首先,采用响应面法(RSM)设计了阳极氧化附著面(铝板)的实验矩阵;控制参数有浓度、电流和时间。表面形貌的特征是表面粗糙度和接触角以及扫描电子显微镜(SEM)图像。测试了阳极氧化铝-聚氨酯(Al-PU)粘接接头的界面强度,并通过扫描电镜进行了断裂分析。实验结果表明,在H2SO4浓度为0.5 M、电流为1.5 A、阳极氧化时间为45 min的条件下,界面抗剪强度比未处理的接头提高了920%。其次,采用了一种新的信息融合方法;该模型将利用ResNet从SEM图像中提取的特征与RSM矩阵中的数值数据相结合。该组合表示被馈送到XGBoost模型中,该模型实现了强大的材料性能分析和回归。通过XGBoost和集成梯度进行特征重要性分析,为阳极氧化参数和表面特征如何影响接头强度提供了有价值的见解。通过结合数值数据(阳极氧化条件和表面地形特征)以及表面和断口图像分析,该模型将平均绝对百分比误差从18.8%显著降低到10.7%。研究结果强调了整合结构材料的定量和定性信息以开发稳健和准确的机器学习模型的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信