{"title":"Solid-state synergy: Sulfur cathodes, engineered interfaces, and doping innovations for next-gen batteries","authors":"Caryn Niangnunnuam , Balasubramanian Kandasubramanian","doi":"10.1016/j.nanoso.2025.101544","DOIUrl":null,"url":null,"abstract":"<div><div>This review examined Sulfur-based Batteries that possess all-solid-state (ASS) as cutting-edge conservation of energy technologies that offer remarkable theoretical capacity (1675 mAh g⁻¹), enhanced safety, and cost-effectiveness. By employing solid electrolytes based on sulfide, as Li₆PS₅Cl and Li₇P₃S₁₁, ASSBs overcome challenges faced by traditional Li–S batteries, including polysulfide shuttling and flammability. However, interfacial instability, dendrite growth, and mechanical degradation remain key limitations. To address these, researchers have introduced doping strategies (e.g., N, Se, Te, Co, W, Cl, Ta) and engineered sulfur cathodes with carbon frameworks. Notable performances include N-doped carbon–sulfur cathodes with 1145.9 mAh g⁻¹ initial capacity contrast to 88.14 % of storage capacity 100 cycles later, and Se-doped cathodes with 473.8 mAh g⁻¹ and 99.4 % retention. Electrolyte enhancements exhibit conductivities of up to 6.4 mS/cm. Mechano-electrochemical stability is enhanced by utilising flexible polymers and cross-linked structures, thereby reducing stress and maintaining conductive pathways. These advances have enabled ASSBs to accomplish energy intensity up to 2600 Wh kg⁻¹ , rapid charging, and reliable operation at −40 °C, making them ideal for electric vehicles, aerospace, and grid storage. Ongoing efforts in interfacial design, AI-assisted material discovery, and scalable fabrication are essential for commercial realisation.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"43 ","pages":"Article 101544"},"PeriodicalIF":5.4500,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25001143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This review examined Sulfur-based Batteries that possess all-solid-state (ASS) as cutting-edge conservation of energy technologies that offer remarkable theoretical capacity (1675 mAh g⁻¹), enhanced safety, and cost-effectiveness. By employing solid electrolytes based on sulfide, as Li₆PS₅Cl and Li₇P₃S₁₁, ASSBs overcome challenges faced by traditional Li–S batteries, including polysulfide shuttling and flammability. However, interfacial instability, dendrite growth, and mechanical degradation remain key limitations. To address these, researchers have introduced doping strategies (e.g., N, Se, Te, Co, W, Cl, Ta) and engineered sulfur cathodes with carbon frameworks. Notable performances include N-doped carbon–sulfur cathodes with 1145.9 mAh g⁻¹ initial capacity contrast to 88.14 % of storage capacity 100 cycles later, and Se-doped cathodes with 473.8 mAh g⁻¹ and 99.4 % retention. Electrolyte enhancements exhibit conductivities of up to 6.4 mS/cm. Mechano-electrochemical stability is enhanced by utilising flexible polymers and cross-linked structures, thereby reducing stress and maintaining conductive pathways. These advances have enabled ASSBs to accomplish energy intensity up to 2600 Wh kg⁻¹ , rapid charging, and reliable operation at −40 °C, making them ideal for electric vehicles, aerospace, and grid storage. Ongoing efforts in interfacial design, AI-assisted material discovery, and scalable fabrication are essential for commercial realisation.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .