{"title":"A Unified Perspective for Loss-Oriented Imbalanced Learning via Localization.","authors":"Zitai Wang,Qianqian Xu,Zhiyong Yang,Zhikang Xu,Linchao Zhang,Xiaochun Cao,Qingming Huang","doi":"10.1109/tpami.2025.3609440","DOIUrl":null,"url":null,"abstract":"Due to the inherent imbalance in real-world datasets, naïve Empirical Risk Minimization (ERM) tends to bias the learning process towards the majority classes, hindering generalization to minority classes. To rebalance the learning process, one straightforward yet effective approach is to modify the loss function via class-dependent terms, such as re-weighting and logit-adjustment. However, existing analysis of these loss-oriented methods remains coarse-grained and fragmented, failing to explain some empirical results. After reviewing prior work, we find that the properties used through their analysis are typically global, i.e., defined over the whole dataset. Hence, these properties fail to effectively capture how class-dependent terms influence the learning process. To bridge this gap, we turn to explore the localized versions of such properties i.e., defined within each class. Specifically, we employ localized calibration to provide consistency validation across a broader range of losses and localized Lipschitz continuity to provide a fine-grained generalization bound. In this way, we reach a unified perspective for improving and adjusting loss-oriented methods. Finally, a principled learning algorithm is developed based on these insights. Empirical results on both traditional ResNets and foundation models validate our theoretical analyses and demonstrate the effectiveness of the proposed method.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"34 1","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tpami.2025.3609440","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the inherent imbalance in real-world datasets, naïve Empirical Risk Minimization (ERM) tends to bias the learning process towards the majority classes, hindering generalization to minority classes. To rebalance the learning process, one straightforward yet effective approach is to modify the loss function via class-dependent terms, such as re-weighting and logit-adjustment. However, existing analysis of these loss-oriented methods remains coarse-grained and fragmented, failing to explain some empirical results. After reviewing prior work, we find that the properties used through their analysis are typically global, i.e., defined over the whole dataset. Hence, these properties fail to effectively capture how class-dependent terms influence the learning process. To bridge this gap, we turn to explore the localized versions of such properties i.e., defined within each class. Specifically, we employ localized calibration to provide consistency validation across a broader range of losses and localized Lipschitz continuity to provide a fine-grained generalization bound. In this way, we reach a unified perspective for improving and adjusting loss-oriented methods. Finally, a principled learning algorithm is developed based on these insights. Empirical results on both traditional ResNets and foundation models validate our theoretical analyses and demonstrate the effectiveness of the proposed method.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.