Can the success of digital super-resolution networks be transferred to passive all-optical systems?

IF 6.6 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matan Kleiner, Lior Michaeli, Tomer Michaeli
{"title":"Can the success of digital super-resolution networks be transferred to passive all-optical systems?","authors":"Matan Kleiner, Lior Michaeli, Tomer Michaeli","doi":"10.1515/nanoph-2025-0294","DOIUrl":null,"url":null,"abstract":"The deep learning revolution has increased the demand for computational resources, driving interest in efficient alternatives like all-optical diffractive neural networks (AODNNs). These systems operate at the speed of light without consuming external energy, making them an attractive platform for energy-efficient computation. One task that could greatly benefit from an all-optical implementation is spatial super-resolution. This would allow overcoming the fundamental resolution limitation of conventional optical systems, dictated by their numerical aperture. Here, we examine whether the success of digital super-resolution networks can be replicated with AODNNs considering networks with phase-only nonlinearities. We find that while promising, super-resolution AODNNs face two key physical challenges: (i) a tradeoff between reconstruction fidelity and energy preservation along the optical path and (ii) a limited dynamic range of input intensities that can be effectively processed. These findings offer a first step toward understanding and addressing the design constraints of passive, all-optical super-resolution systems.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"24 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0294","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The deep learning revolution has increased the demand for computational resources, driving interest in efficient alternatives like all-optical diffractive neural networks (AODNNs). These systems operate at the speed of light without consuming external energy, making them an attractive platform for energy-efficient computation. One task that could greatly benefit from an all-optical implementation is spatial super-resolution. This would allow overcoming the fundamental resolution limitation of conventional optical systems, dictated by their numerical aperture. Here, we examine whether the success of digital super-resolution networks can be replicated with AODNNs considering networks with phase-only nonlinearities. We find that while promising, super-resolution AODNNs face two key physical challenges: (i) a tradeoff between reconstruction fidelity and energy preservation along the optical path and (ii) a limited dynamic range of input intensities that can be effectively processed. These findings offer a first step toward understanding and addressing the design constraints of passive, all-optical super-resolution systems.
数字超分辨网络的成功能否转移到无源全光系统?
深度学习革命增加了对计算资源的需求,推动了对全光学衍射神经网络(AODNNs)等高效替代方案的兴趣。这些系统在不消耗外部能量的情况下以光速运行,使它们成为一个有吸引力的节能计算平台。一个可以从全光学实现中极大受益的任务是空间超分辨率。这将克服传统光学系统受数值孔径限制的基本分辨率限制。在这里,我们研究了考虑纯相位非线性网络的aodnn是否可以复制数字超分辨率网络的成功。我们发现,尽管前景光明,超分辨率aodnn面临两个关键的物理挑战:(i)重建保真度和沿光路的能量保存之间的权衡;(ii)可以有效处理的输入强度的有限动态范围。这些发现为理解和解决无源全光超分辨率系统的设计限制提供了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信