Phase-matched electron–photon interactions enabled by 3D-printed helical waveguides

IF 6.6 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Masoud Taleb, Mohsen Samadi, Nahid Talebi
{"title":"Phase-matched electron–photon interactions enabled by 3D-printed helical waveguides","authors":"Masoud Taleb, Mohsen Samadi, Nahid Talebi","doi":"10.1515/nanoph-2025-0297","DOIUrl":null,"url":null,"abstract":"The Smith–Purcell effect enables electromagnetic radiation across arbitrary spectral ranges by phase-matching the diffraction orders of an optical grating with the near-field of a moving electron. In this work, we introduce a novel approach using a helically shaped waveguide, where phase-matching is achieved through guided light within a helical optical fiber fabricated via two-photon polymerization using a 3D printer. Our results demonstrate that radiation from these structures precisely satisfies the phase-matching condition and is emitted directionally at specific angles, contrasting with the broad angular distribution characteristic of the traditional Smith–Purcell effect. Helical electron-driven photon sources establish a new paradigm, enabling 3D-printed structures to control electron-beam-induced radiation and, inversely, to facilitate light-induced efficient electron beam shaping and acceleration.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"17 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0297","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Smith–Purcell effect enables electromagnetic radiation across arbitrary spectral ranges by phase-matching the diffraction orders of an optical grating with the near-field of a moving electron. In this work, we introduce a novel approach using a helically shaped waveguide, where phase-matching is achieved through guided light within a helical optical fiber fabricated via two-photon polymerization using a 3D printer. Our results demonstrate that radiation from these structures precisely satisfies the phase-matching condition and is emitted directionally at specific angles, contrasting with the broad angular distribution characteristic of the traditional Smith–Purcell effect. Helical electron-driven photon sources establish a new paradigm, enabling 3D-printed structures to control electron-beam-induced radiation and, inversely, to facilitate light-induced efficient electron beam shaping and acceleration.
3d打印螺旋波导实现相位匹配电子-光子相互作用
史密斯-珀塞尔效应通过将光栅的衍射顺序与运动电子的近场相匹配,使电磁辐射能够跨越任意光谱范围。在这项工作中,我们介绍了一种使用螺旋形波导的新方法,其中通过使用3D打印机通过双光子聚合制造的螺旋光纤内的引导光实现相位匹配。结果表明,与传统的Smith-Purcell效应的宽角分布特性相比,这些结构的辐射精确地满足相位匹配条件,并以特定的角度定向发射。螺旋电子驱动光子源建立了一个新的范例,使3d打印结构能够控制电子束诱导辐射,反过来,促进光诱导的有效电子束成形和加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信