Biomolecular condensates of ATG18 reshape ER for autophagy in plants

IF 8.7 1区 生物学 Q1 CELL BIOLOGY
Yang Shao, Xunzheng Li, Benhui Shi, Songyang Wang, Zisheng Luo, Yanqun Xu, Baolei Li, Shuqing Feng, Li Liang, Huanquan Zheng, Jiaqi Sun
{"title":"Biomolecular condensates of ATG18 reshape ER for autophagy in plants","authors":"Yang Shao, Xunzheng Li, Benhui Shi, Songyang Wang, Zisheng Luo, Yanqun Xu, Baolei Li, Shuqing Feng, Li Liang, Huanquan Zheng, Jiaqi Sun","doi":"10.1016/j.devcel.2025.08.013","DOIUrl":null,"url":null,"abstract":"Autophagosomes originate from and maintain association with the endoplasmic reticulum (ER) during their formation, yet how these processes are molecularly coordinated in plants remains poorly understood. Here, we demonstrate that <em>Arabidopsis</em> autophagy-related protein 18a (ATG18a), a key organizer of early autophagosome formation, undergoes phase separation to form biomolecular condensates on the ER membrane, which progress from highly mobile droplets to stable ring-like structures, while the ER is reshaped. We discovered that ATG18a condensates work together with ROOT HAIR DEFECTIVE3 (RHD3), an ER membrane-shaping protein, with RABC1 serving as a molecular linker between them. Importantly, RABC1 facilitates both RHD3 assembly necessary for the formation of ring-like ER structures and its interaction with ATG18a condensates. These findings reveal a mechanism whereby biomolecular condensates work together with membrane-shaping proteins to reshape specialized membrane domains through wetting interactions, providing an insight into autophagosome formation in plant stress responses.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"312 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.08.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagosomes originate from and maintain association with the endoplasmic reticulum (ER) during their formation, yet how these processes are molecularly coordinated in plants remains poorly understood. Here, we demonstrate that Arabidopsis autophagy-related protein 18a (ATG18a), a key organizer of early autophagosome formation, undergoes phase separation to form biomolecular condensates on the ER membrane, which progress from highly mobile droplets to stable ring-like structures, while the ER is reshaped. We discovered that ATG18a condensates work together with ROOT HAIR DEFECTIVE3 (RHD3), an ER membrane-shaping protein, with RABC1 serving as a molecular linker between them. Importantly, RABC1 facilitates both RHD3 assembly necessary for the formation of ring-like ER structures and its interaction with ATG18a condensates. These findings reveal a mechanism whereby biomolecular condensates work together with membrane-shaping proteins to reshape specialized membrane domains through wetting interactions, providing an insight into autophagosome formation in plant stress responses.

Abstract Image

ATG18的生物分子凝聚物重塑内质网,促进植物自噬
自噬体起源于内质网并在其形成过程中维持与内质网的联系,然而这些过程在植物中的分子协调机制尚不清楚。本研究表明,拟南芥自噬相关蛋白18a (ATG18a)是早期自噬体形成的关键组织者,在内质网膜上经历相分离形成生物分子凝聚体,从高移动的液滴发展到稳定的环状结构,同时内质网被重塑。我们发现ATG18a凝聚物与根毛缺陷3 (RHD3)一起工作,RHD3是一种ER膜形成蛋白,RABC1作为它们之间的分子连接体。重要的是,RABC1促进了环状ER结构形成所需的RHD3组装及其与ATG18a凝聚物的相互作用。这些发现揭示了生物分子凝聚物与膜形成蛋白通过润湿相互作用重塑特殊膜结构域的机制,为植物胁迫反应中自噬体的形成提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信