High-performance Dawson-type polyoxometalate-based electrochromic energy storage devices with Co-doped MnO2 counter electrodes

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Lin Liu, Jing Liang, Kaihua Wang, Guodong Li, Qianshuo Ren, Shi-Ming Wang, Chao Li, Jun Liang Lin
{"title":"High-performance Dawson-type polyoxometalate-based electrochromic energy storage devices with Co-doped MnO2 counter electrodes","authors":"Lin Liu, Jing Liang, Kaihua Wang, Guodong Li, Qianshuo Ren, Shi-Ming Wang, Chao Li, Jun Liang Lin","doi":"10.1016/j.electacta.2025.147381","DOIUrl":null,"url":null,"abstract":"Electrochromic energy storage devices (EESDs) represent an innovative solution for future intelligent energy systems by integrating energy storage with visual status indication. Yet the inherent low electrical conductivity and color interference of conventional MnO<sub>2</sub> electrodes limit both energy storage capacity and optical contrast in EESDs. To overcome these limitations, this study introduces an innovative cobalt doping strategy that simultaneously optimizes the Mn<sup>3+</sup>/Mn<sup>4+</sup> ratio and oxygen vacancy concentration in MnO<sub>2</sub> electrodes. This optimization led to remarkable improvements in both electrochemical and optical performance: the resulting EESD exhibits an outstanding optical contrast of 76.5% at 700 nm, fast response (3.2/2.7 s for coloration / bleaching respectively), excellent coloring efficiency (150.3 cm<sup>2</sup>/C), and substantially improved areal capacitance reaching 12.45 mF/cm<sup>2</sup> (88% improvement compared to undoped devices). The synergistic enhancement stems from improved charge transfer kinetics and Li<sup>+</sup> diffusion efficiency (<em>D</em> = 1.494 × 10<sup>-8</sup> cm<sup>2</sup>/s), along with excellent stability demonstrated by 80% optical modulation retention after 150 cycles and memory time up to 10 hours (14% decay). These findings offer a fundamental materials development approach for developing EESDs that integrate superior energy storage performance with real-time optical display functions.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"66 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.147381","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochromic energy storage devices (EESDs) represent an innovative solution for future intelligent energy systems by integrating energy storage with visual status indication. Yet the inherent low electrical conductivity and color interference of conventional MnO2 electrodes limit both energy storage capacity and optical contrast in EESDs. To overcome these limitations, this study introduces an innovative cobalt doping strategy that simultaneously optimizes the Mn3+/Mn4+ ratio and oxygen vacancy concentration in MnO2 electrodes. This optimization led to remarkable improvements in both electrochemical and optical performance: the resulting EESD exhibits an outstanding optical contrast of 76.5% at 700 nm, fast response (3.2/2.7 s for coloration / bleaching respectively), excellent coloring efficiency (150.3 cm2/C), and substantially improved areal capacitance reaching 12.45 mF/cm2 (88% improvement compared to undoped devices). The synergistic enhancement stems from improved charge transfer kinetics and Li+ diffusion efficiency (D = 1.494 × 10-8 cm2/s), along with excellent stability demonstrated by 80% optical modulation retention after 150 cycles and memory time up to 10 hours (14% decay). These findings offer a fundamental materials development approach for developing EESDs that integrate superior energy storage performance with real-time optical display functions.

Abstract Image

基于共掺杂MnO2对电极的高性能道森型多金属氧酸盐电致变色储能装置
电致变色储能装置(EESDs)通过将能量存储与视觉状态指示相结合,代表了未来智能能源系统的创新解决方案。然而,传统二氧化锰电极固有的低导电性和颜色干扰限制了eesd的能量存储容量和光学对比度。为了克服这些限制,本研究引入了一种创新的钴掺杂策略,同时优化了MnO2电极中的Mn3+/Mn4+比率和氧空位浓度。这种优化使得电化学和光学性能都有了显著的提高:所得到的esd在700 nm处具有76.5%的光学对比度,快速响应(着色/漂白分别为3.2/2.7 s),出色的着色效率(150.3 cm2/C),并且大幅度提高了面电容,达到12.45 mF/cm2(与未掺杂的器件相比提高了88%)。协同增强源于电荷转移动力学和Li+扩散效率的提高(D = 1.494 × 10-8 cm2/s),以及优异的稳定性,150次循环后80%的光调制保持率和长达10小时的记忆时间(衰减14%)。这些发现为开发集成了卓越储能性能和实时光学显示功能的eesd提供了一种基本的材料开发方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信