Artificial intelligence and computational methods in human metabolism research: A comprehensive survey.

IF 8.9
Journal of pharmaceutical analysis Pub Date : 2025-08-01 Epub Date: 2025-08-18 DOI:10.1016/j.jpha.2025.101437
Manzhan Zhang, Yuxin Wan, Jing Wang, Shiliang Li, Honglin Li
{"title":"Artificial intelligence and computational methods in human metabolism research: A comprehensive survey.","authors":"Manzhan Zhang, Yuxin Wan, Jing Wang, Shiliang Li, Honglin Li","doi":"10.1016/j.jpha.2025.101437","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the metabolism of endogenous and exogenous substances in the human body is essential for elucidating disease mechanisms and evaluating the safety and efficacy of drug candidates during the drug development process. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning (DL) techniques, have introduced innovative approaches to metabolism research, enabling more accurate predictions and insights. This paper emphasizes computational and AI-driven methodologies, highlighting how ML enhances predictive modeling for human metabolism at the molecular level and facilitates integration into genome-scale metabolic models (GEMs) at the omics level. Challenges still remain, including data heterogeneity and model interpretability. This work aims to provide valuable insights and references for researchers in drug discovery and development, ultimately contributing to the advancement of precision medicine.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 8","pages":"101437"},"PeriodicalIF":8.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2025.101437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the metabolism of endogenous and exogenous substances in the human body is essential for elucidating disease mechanisms and evaluating the safety and efficacy of drug candidates during the drug development process. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning (DL) techniques, have introduced innovative approaches to metabolism research, enabling more accurate predictions and insights. This paper emphasizes computational and AI-driven methodologies, highlighting how ML enhances predictive modeling for human metabolism at the molecular level and facilitates integration into genome-scale metabolic models (GEMs) at the omics level. Challenges still remain, including data heterogeneity and model interpretability. This work aims to provide valuable insights and references for researchers in drug discovery and development, ultimately contributing to the advancement of precision medicine.

Abstract Image

Abstract Image

Abstract Image

人工智能与计算方法在人体代谢研究中的应用综述。
在药物开发过程中,了解内源性和外源性物质在人体内的代谢对于阐明疾病机制和评估候选药物的安全性和有效性至关重要。人工智能(AI)的最新进展,特别是机器学习(ML)和深度学习(DL)技术,为代谢研究引入了创新方法,从而实现了更准确的预测和见解。本文强调计算和人工智能驱动的方法,强调机器学习如何在分子水平上增强人类代谢的预测建模,并促进在组学水平上整合到基因组尺度代谢模型(GEMs)中。挑战仍然存在,包括数据异构性和模型可解释性。这项工作旨在为研究人员在药物发现和开发方面提供有价值的见解和参考,最终促进精准医学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信