scTrace+: Enhancing cell fate inference by integrating the lineage-tracing and multi-faceted transcriptomic similarity information.

IF 7.7
Cell systems Pub Date : 2025-09-17 Epub Date: 2025-09-10 DOI:10.1016/j.cels.2025.101398
Wenbo Guo, Zeyu Chen, Xinqi Li, Jingmin Huang, Qifan Hu, Jin Gu
{"title":"scTrace+: Enhancing cell fate inference by integrating the lineage-tracing and multi-faceted transcriptomic similarity information.","authors":"Wenbo Guo, Zeyu Chen, Xinqi Li, Jingmin Huang, Qifan Hu, Jin Gu","doi":"10.1016/j.cels.2025.101398","DOIUrl":null,"url":null,"abstract":"<p><p>Deciphering the cell state dynamics is crucial for understanding biological processes. Single-cell lineage-tracing technologies provide an effective way to track single-cell lineages by heritable DNA barcodes, but the high missing rates of lineage barcodes and the intra-clonal heterogeneity bring great challenges to dissecting the mechanisms of cell fate decision. Here, we systematically evaluate the features of single-cell lineage-tracing data and then develop an algorithm, scTrace+, to enhance the cell dynamic traces by incorporating multi-faceted transcriptomic similarities into lineage relationships via a kernelized probabilistic matrix factorization model. We assess its feasibility and performance by conducting ablation and benchmarking experiments on multiple real datasets and show that scTrace+ can accurately predict the fates of cells. Further, scTrace+ effectively identifies some important driver genes implicated in cellular fate decisions of diverse biological processes, such as cell differentiation or tumor drug responses. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101398"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deciphering the cell state dynamics is crucial for understanding biological processes. Single-cell lineage-tracing technologies provide an effective way to track single-cell lineages by heritable DNA barcodes, but the high missing rates of lineage barcodes and the intra-clonal heterogeneity bring great challenges to dissecting the mechanisms of cell fate decision. Here, we systematically evaluate the features of single-cell lineage-tracing data and then develop an algorithm, scTrace+, to enhance the cell dynamic traces by incorporating multi-faceted transcriptomic similarities into lineage relationships via a kernelized probabilistic matrix factorization model. We assess its feasibility and performance by conducting ablation and benchmarking experiments on multiple real datasets and show that scTrace+ can accurately predict the fates of cells. Further, scTrace+ effectively identifies some important driver genes implicated in cellular fate decisions of diverse biological processes, such as cell differentiation or tumor drug responses. A record of this paper's transparent peer review process is included in the supplemental information.

scTrace+:通过整合谱系追踪和多方面的转录组相似性信息,增强细胞命运推断。
破译细胞状态动力学对于理解生物过程至关重要。单细胞谱系追踪技术为利用可遗传DNA条形码追踪单细胞谱系提供了一种有效的方法,但谱系条形码的高缺失率和克隆内异质性给细胞命运决定机制的剖析带来了巨大的挑战。在这里,我们系统地评估了单细胞谱系追踪数据的特征,然后开发了一种算法,scTrace+,通过核概率矩阵分解模型将多方面的转录组相似性纳入谱系关系,以增强细胞动态轨迹。我们通过在多个真实数据集上进行消融和基准实验来评估其可行性和性能,并表明scTrace+可以准确预测细胞的命运。此外,scTrace+有效地识别了一些重要的驱动基因,这些基因与多种生物过程(如细胞分化或肿瘤药物反应)的细胞命运决定有关。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信