Retrospective Evaluation of the Correlation Between Somatostatin Receptor PET/CT and Histopathology in Patients with Suspected Intracranial Meningiomas.
Ricarda Ebner, Jana Braach, Johannes Rübenthaler, Clemens C Cyran, Gabriel T Sheikh, Mattias Brendel, Nathalie L Albert, Reinhold Tiling, Tobias Greve, Anna Hinterberger, Matthias P Fabritius, Nicola Fink, Jens Ricke, Rudolf A Werner, Freba Grawe
{"title":"Retrospective Evaluation of the Correlation Between Somatostatin Receptor PET/CT and Histopathology in Patients with Suspected Intracranial Meningiomas.","authors":"Ricarda Ebner, Jana Braach, Johannes Rübenthaler, Clemens C Cyran, Gabriel T Sheikh, Mattias Brendel, Nathalie L Albert, Reinhold Tiling, Tobias Greve, Anna Hinterberger, Matthias P Fabritius, Nicola Fink, Jens Ricke, Rudolf A Werner, Freba Grawe","doi":"10.2967/jnumed.125.270115","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this retrospective study was to evaluate the correlation between findings from somatostatin receptor (SSTR) PET/CT and histopathology in patients with suspected intracranial meningiomas. <b>Methods:</b> We conducted a retrospective analysis of 8,077 SSTR imaging studies recorded in our institutional database between 2006 and 2021. In total, 223 SSTR PET/CT scans were performed for suspected meningioma, and 240 lesions were matched with histopathology results within 4 mo. Reports from SSTR PET/CT scans and histopathology were retrospectively reviewed to assess the presence of intracranial meningiomas. The positive and negative predictive values, sensitivity, specificity, and overall diagnostic accuracy of SSTR PET/CT were calculated. The SUV<sub>max</sub>, SUV<sub>mean</sub>, and SUV<sub>peak</sub> were determined for each lesion. <b>Results:</b> In 222 (92.5%) of 240 lesions, meningioma was accurately identified by SSTR PET/CT and confirmed by histopathology. In 7 cases (2.9%), SSTR PET/CT suspected meningioma was not confirmed by histopathology (false-positive). Furthermore, in 11 cases (5%), meningioma was neither suspected by SSTR PET/CT nor confirmed by histopathology (true-negative result). There were no false-negative findings in our cohort. SSTR PET/CT demonstrated a sensitivity of 100% (95% CI, 98.4%-100%) and a specificity of 61.1% (95% CI, 35.8%-82.7%) in detecting meningiomas. Positive predictive value was 96.9% (95% CI, 93.8%-98.8%), and negative predictive value was 100% (95% CI, 71.5%-100%). The overall diagnostic accuracy was 97.1%. The receiver-operating-characteristic analysis for SUV<sub>max</sub> in predicting histopathology results showed an area under the curve of 94%, indicating an excellent ability of SUV<sub>max</sub> to distinguish between positive and negative histopathologic findings. <b>Conclusion:</b> SSTR PET/CT is a precise imaging modality for detecting intracranial meningiomas, as demonstrated by its high sensitivity. However, in 2.9% of cases, despite a positive PET/CT result, histopathology did not confirm the presence of a meningioma. Integration of MRI, histopathology, and SSTR PET/CT supports informed treatment decisions.</p>","PeriodicalId":94099,"journal":{"name":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","volume":" ","pages":"1561-1567"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.125.270115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this retrospective study was to evaluate the correlation between findings from somatostatin receptor (SSTR) PET/CT and histopathology in patients with suspected intracranial meningiomas. Methods: We conducted a retrospective analysis of 8,077 SSTR imaging studies recorded in our institutional database between 2006 and 2021. In total, 223 SSTR PET/CT scans were performed for suspected meningioma, and 240 lesions were matched with histopathology results within 4 mo. Reports from SSTR PET/CT scans and histopathology were retrospectively reviewed to assess the presence of intracranial meningiomas. The positive and negative predictive values, sensitivity, specificity, and overall diagnostic accuracy of SSTR PET/CT were calculated. The SUVmax, SUVmean, and SUVpeak were determined for each lesion. Results: In 222 (92.5%) of 240 lesions, meningioma was accurately identified by SSTR PET/CT and confirmed by histopathology. In 7 cases (2.9%), SSTR PET/CT suspected meningioma was not confirmed by histopathology (false-positive). Furthermore, in 11 cases (5%), meningioma was neither suspected by SSTR PET/CT nor confirmed by histopathology (true-negative result). There were no false-negative findings in our cohort. SSTR PET/CT demonstrated a sensitivity of 100% (95% CI, 98.4%-100%) and a specificity of 61.1% (95% CI, 35.8%-82.7%) in detecting meningiomas. Positive predictive value was 96.9% (95% CI, 93.8%-98.8%), and negative predictive value was 100% (95% CI, 71.5%-100%). The overall diagnostic accuracy was 97.1%. The receiver-operating-characteristic analysis for SUVmax in predicting histopathology results showed an area under the curve of 94%, indicating an excellent ability of SUVmax to distinguish between positive and negative histopathologic findings. Conclusion: SSTR PET/CT is a precise imaging modality for detecting intracranial meningiomas, as demonstrated by its high sensitivity. However, in 2.9% of cases, despite a positive PET/CT result, histopathology did not confirm the presence of a meningioma. Integration of MRI, histopathology, and SSTR PET/CT supports informed treatment decisions.