Real-time Deformation-aware Control for Autonomous Robotic Subretinal Injection under iOCT Guidance.

Demir Arikan, Peiyao Zhang, Michael Sommersperger, Shervin Dehghani, Mojtaba Esfandiari, Russel H Taylor, M Ali Nasseri, Peter Gehlbach, Nassir Navab, Iulian Iordachita
{"title":"Real-time Deformation-aware Control for Autonomous Robotic Subretinal Injection under iOCT Guidance.","authors":"Demir Arikan, Peiyao Zhang, Michael Sommersperger, Shervin Dehghani, Mojtaba Esfandiari, Russel H Taylor, M Ali Nasseri, Peter Gehlbach, Nassir Navab, Iulian Iordachita","doi":"10.1109/icra55743.2025.11128595","DOIUrl":null,"url":null,"abstract":"<p><p>Robotic platforms provide consistent and precise tool positioning that significantly enhances retinal microsurgery. Integrating such systems with intraoperative optical coherence tomography (iOCT) enables image-guided robotic interventions, allowing autonomous performance of advanced treatments, such as injecting therapeutic agents into the subretinal space. However, tissue deformations due to tool-tissue interactions constitute a significant challenge in autonomous iOCT-guided robotic subretinal injections. Such interactions impact correct needle positioning and procedure outcomes. This paper presents a novel method for autonomous subretinal injection under iOCT guidance that considers tissue deformations during the insertion procedure. The technique is achieved through real-time segmentation and 3D reconstruction of the surgical scene from densely sampled iOCT B-scans, which we refer to as B<sup>5</sup>-scans. Using B<sup>5</sup>-scans we monitor the position of the instrument relative to a virtual target layer between the ILM and RPE. Our experiments on <i>ex-vivo</i> porcine eyes demonstrate dynamic adjustment of the insertion depth and overall improved accuracy in needle positioning compared to prior autonomous insertion approaches. Compared to a 35% success rate in subretinal bleb generation with previous approaches, our method reliably created subretinal blebs in 90% our experiments. The source code and data used in this study are publicly available on GitHub.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2025 ","pages":"10531-10537"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12422304/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra55743.2025.11128595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robotic platforms provide consistent and precise tool positioning that significantly enhances retinal microsurgery. Integrating such systems with intraoperative optical coherence tomography (iOCT) enables image-guided robotic interventions, allowing autonomous performance of advanced treatments, such as injecting therapeutic agents into the subretinal space. However, tissue deformations due to tool-tissue interactions constitute a significant challenge in autonomous iOCT-guided robotic subretinal injections. Such interactions impact correct needle positioning and procedure outcomes. This paper presents a novel method for autonomous subretinal injection under iOCT guidance that considers tissue deformations during the insertion procedure. The technique is achieved through real-time segmentation and 3D reconstruction of the surgical scene from densely sampled iOCT B-scans, which we refer to as B5-scans. Using B5-scans we monitor the position of the instrument relative to a virtual target layer between the ILM and RPE. Our experiments on ex-vivo porcine eyes demonstrate dynamic adjustment of the insertion depth and overall improved accuracy in needle positioning compared to prior autonomous insertion approaches. Compared to a 35% success rate in subretinal bleb generation with previous approaches, our method reliably created subretinal blebs in 90% our experiments. The source code and data used in this study are publicly available on GitHub.

基于iOCT制导的自主机器人视网膜下注射实时变形感知控制。
机器人平台提供一致和精确的工具定位,显著提高视网膜显微手术。将这些系统与术中光学相干断层扫描(iOCT)相结合,可以实现图像引导的机器人干预,允许自主执行高级治疗,例如向视网膜下间隙注射治疗剂。然而,由于工具-组织相互作用导致的组织变形构成了自主的ioct引导机器人视网膜下注射的重大挑战。这种相互作用影响正确的针头定位和手术结果。本文提出了一种在iOCT引导下进行自主视网膜下注射的新方法,该方法在插入过程中考虑了组织变形。该技术通过对密集采样的iOCT b扫描(我们称之为b5扫描)进行手术场景的实时分割和3D重建来实现。使用b5扫描,我们监测仪器相对于ILM和RPE之间的虚拟目标层的位置。我们在离体猪眼上的实验表明,与之前的自主插入方法相比,该方法可以动态调整插入深度,总体上提高了针头定位的准确性。与以往方法产生视网膜下气泡的成功率35%相比,我们的方法在90%的实验中可靠地产生了视网膜下气泡。本研究中使用的源代码和数据在GitHub上是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信