Synergistic selenium vacancies and bismuth metal centers on Bi2Se3 for enhanced photocatalytic CO2 reduction

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yanjun Zhu, Qiutong Han and Yong Zhou
{"title":"Synergistic selenium vacancies and bismuth metal centers on Bi2Se3 for enhanced photocatalytic CO2 reduction","authors":"Yanjun Zhu, Qiutong Han and Yong Zhou","doi":"10.1039/D5NA00526D","DOIUrl":null,"url":null,"abstract":"<p >Ultrathin inorganic nanosheets possess a novel electronic structure that enables exceptional performance in the catalytic reduction of carbon dioxide (CO<small><sub>2</sub></small>), representing a promising strategy to mitigate global warming. Bismuth selenide (Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small>) nanosheets are important topological insulators exhibiting high electrical conductivity. Through a solvothermal method followed by hydrogen annealing, selenium-vacancy-rich Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> nanosheets with <em>in situ</em> formed bismuth metal clusters are prepared. In this system, surface Se vacancies function as active centers for electron trapping and CO<small><sub>2</sub></small> adsorption, while Bi metal clusters serve as reactive sites to facilitate charge transfer and catalytic reactions. This dual-functional design establishes a unidirectional electron transfer pathway from selenium vacancies to Bi metal through the topological conductive surface, thereby concentrating electrons at the Bi interface and providing abundant reducing equivalents to enhance CO yield.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 20","pages":" 6640-6645"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d5na00526d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrathin inorganic nanosheets possess a novel electronic structure that enables exceptional performance in the catalytic reduction of carbon dioxide (CO2), representing a promising strategy to mitigate global warming. Bismuth selenide (Bi2Se3) nanosheets are important topological insulators exhibiting high electrical conductivity. Through a solvothermal method followed by hydrogen annealing, selenium-vacancy-rich Bi2Se3 nanosheets with in situ formed bismuth metal clusters are prepared. In this system, surface Se vacancies function as active centers for electron trapping and CO2 adsorption, while Bi metal clusters serve as reactive sites to facilitate charge transfer and catalytic reactions. This dual-functional design establishes a unidirectional electron transfer pathway from selenium vacancies to Bi metal through the topological conductive surface, thereby concentrating electrons at the Bi interface and providing abundant reducing equivalents to enhance CO yield.

Abstract Image

协同硒空位和铋金属中心在Bi2Se3上增强光催化CO2还原。
超薄无机纳米片具有新颖的电子结构,在催化还原二氧化碳(CO2)方面具有卓越的性能,代表了缓解全球变暖的有希望的策略。硒化铋(Bi2Se3)纳米片是具有高导电性的重要拓扑绝缘体。采用溶剂热法和氢退火法制备了富硒空位Bi2Se3纳米片和原位形成的铋金属团簇。在该体系中,表面Se空位作为电子捕获和CO2吸附的活性中心,而Bi金属团簇作为促进电荷转移和催化反应的活性位点。这种双功能设计通过拓扑导电表面建立了从硒空位到Bi金属的单向电子转移途径,从而将电子集中在Bi界面上,并提供丰富的还原当量,从而提高CO产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信