Tianming Sun†, Yining Zhao, Yujia Fan, Xiaoyu Guo, Zhexin Tang and Mingqing Wang
{"title":"Scalable synthesis and optical tuning of CsPbBr3 nanocrystal inks for dual-color anti-counterfeiting applications","authors":"Tianming Sun†, Yining Zhao, Yujia Fan, Xiaoyu Guo, Zhexin Tang and Mingqing Wang","doi":"10.1039/D5NA00602C","DOIUrl":null,"url":null,"abstract":"<p >We present a scalable, ambient-air synthesis of CsPbBr<small><sub>3</sub></small> perovskite nanocrystal (NC) inks with enhanced optical performance and environmental stability, enabled by post-synthetic surface modification using oleylamine (OAm). Systematic tuning of OAm concentration led to NCs with reduced particle size, improved crystallinity, and effective defect passivation, yielding a peak photoluminescence quantum yield (PLQY) of 93.1% and a prolonged carrier lifetime of 84.02 ns. These modified NCs exhibited significantly improved long-term structural stability compared to unmodified samples. Furthermore, halide exchange <em>via</em> iodine incorporation enabled controlled emission tuning from green to red. Dual-color emissive inks were digitally printed into high-resolution patterns on flexible substrates, which remained inconspicuous under visible light but displayed vivid fluorescence under UV illumination. This dual-mode visibility offers a secure and versatile platform for next-generation anti-counterfeiting technologies and information encryption, demonstrating the potential of perovskite NCs in advanced functional ink applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 20","pages":" 6422-6425"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d5na00602c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a scalable, ambient-air synthesis of CsPbBr3 perovskite nanocrystal (NC) inks with enhanced optical performance and environmental stability, enabled by post-synthetic surface modification using oleylamine (OAm). Systematic tuning of OAm concentration led to NCs with reduced particle size, improved crystallinity, and effective defect passivation, yielding a peak photoluminescence quantum yield (PLQY) of 93.1% and a prolonged carrier lifetime of 84.02 ns. These modified NCs exhibited significantly improved long-term structural stability compared to unmodified samples. Furthermore, halide exchange via iodine incorporation enabled controlled emission tuning from green to red. Dual-color emissive inks were digitally printed into high-resolution patterns on flexible substrates, which remained inconspicuous under visible light but displayed vivid fluorescence under UV illumination. This dual-mode visibility offers a secure and versatile platform for next-generation anti-counterfeiting technologies and information encryption, demonstrating the potential of perovskite NCs in advanced functional ink applications.