Integrated metabolomics and transcriptomics analyses reveal changes in metabolites and their associated gene expression in the blood of patients with recurrent HSV‑2 genital herpes.
Jianping He, Chenxi Feng, Yaohan Xu, Yan Chen, Siji Chen, Jiang Zhu, Yinjing Song, Hao Cheng
{"title":"Integrated metabolomics and transcriptomics analyses reveal changes in metabolites and their associated gene expression in the blood of patients with recurrent HSV‑2 genital herpes.","authors":"Jianping He, Chenxi Feng, Yaohan Xu, Yan Chen, Siji Chen, Jiang Zhu, Yinjing Song, Hao Cheng","doi":"10.3892/mmr.2025.13681","DOIUrl":null,"url":null,"abstract":"<p><p>Genital herpes (GH), which is primarily caused by herpes simplex virus type 2 (HSV‑2), is the leading cause of genital ulcers worldwide, and is characterized by recurring outbreaks of painful genital lesions. Despite the high prevalence of GH, the metabolic and transcriptomic mechanisms underlying disease recurrence remain poorly understood. Therefore, the present study aimed to identify metabolic alterations in patients with HSV‑2 GH via integrating transcriptomics, metabolomics and single‑cell RNA‑sequencing (scRNA‑seq) analyses. Non‑targeted metabolomics identified significant changes in pathways associated with glycerophospholipid metabolism, amino acid biosynthesis and cholesterol metabolism. In addition, RNA‑seq analysis revealed that genes associated with the alanine, aspartate and glutamate, and valine, leucine and isoleucine metabolism pathways were significantly upregulated in patients with recurrent HSV‑2 GH. Furthermore, scRNA‑seq data showed that <i>IDH1</i> and <i>ETNK1</i> were upregulated, mainly in dendritic cells (DCs), plasmacytoid DCs and monocytes derived from patients with GH. Notably, the expression levels of genes associated with oxidative phosphorylation, such as <i>MT‑CYB</i> and <i>MT‑CO3</i>, were significantly elevated across monocytes, T cells and B cells. Overall, the results of the current study suggested that metabolic reprogramming could occur in patients with recurrent HSV‑2 GH, thus providing potential biomarkers and therapeutic targets that could be involved in the future development of treatment approaches.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"32 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13681","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Genital herpes (GH), which is primarily caused by herpes simplex virus type 2 (HSV‑2), is the leading cause of genital ulcers worldwide, and is characterized by recurring outbreaks of painful genital lesions. Despite the high prevalence of GH, the metabolic and transcriptomic mechanisms underlying disease recurrence remain poorly understood. Therefore, the present study aimed to identify metabolic alterations in patients with HSV‑2 GH via integrating transcriptomics, metabolomics and single‑cell RNA‑sequencing (scRNA‑seq) analyses. Non‑targeted metabolomics identified significant changes in pathways associated with glycerophospholipid metabolism, amino acid biosynthesis and cholesterol metabolism. In addition, RNA‑seq analysis revealed that genes associated with the alanine, aspartate and glutamate, and valine, leucine and isoleucine metabolism pathways were significantly upregulated in patients with recurrent HSV‑2 GH. Furthermore, scRNA‑seq data showed that IDH1 and ETNK1 were upregulated, mainly in dendritic cells (DCs), plasmacytoid DCs and monocytes derived from patients with GH. Notably, the expression levels of genes associated with oxidative phosphorylation, such as MT‑CYB and MT‑CO3, were significantly elevated across monocytes, T cells and B cells. Overall, the results of the current study suggested that metabolic reprogramming could occur in patients with recurrent HSV‑2 GH, thus providing potential biomarkers and therapeutic targets that could be involved in the future development of treatment approaches.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.