Aleksandr D Muravev, Andrei V Ivanov, Vladimir A Mukhanov, Boris A Kulnitskiy, Natalia V Maksimova, Victor V Avdeev
{"title":"Synthesis and Characterization of EG/Au Composites via Thermal Exfoliation of Graphite Intercalation Compounds with Tetrachloroauric Acid.","authors":"Aleksandr D Muravev, Andrei V Ivanov, Vladimir A Mukhanov, Boris A Kulnitskiy, Natalia V Maksimova, Victor V Avdeev","doi":"10.3390/nano15171363","DOIUrl":null,"url":null,"abstract":"<p><p>This study demonstrates a novel route to synthesize gold-decorated exfoliated graphite (EG) through graphite intercalation compounds (GICs) with tetrachloroauric acid (HAuCl<sub>4</sub>). We aimed to develop a scalable method for producing EG/Au composites with controlled nanoparticle morphology by investigating the effects of precursor chemistry and thermal expansion conditions. II-stage GIC-HAuCl<sub>4</sub> (average gross-composition: C<sub>23</sub>HAuCl<sub>4</sub>; intercalate layer thickness d<sub>i</sub> = 6.85 Å) was prepared via an exchange reaction of HAuCl<sub>4</sub> with graphite nitrate. Interaction of this GIC with liquid methylamine yielded an occlusive complex, where methylamine-bound HAuCl<sub>4</sub> occupies both interlayer and intercrystalline spaces in the graphite matrix. Methylamine treatment of GIC reduces the onset temperature of exfoliation by ≈100 °C and enhances the expansion efficiency, yielding EG with a low bulk density range of 4-6 g/L when processed at 900 °C in air or nitrogen. Thermal exfoliation of these GICs yielded EG decorated with gold nanoparticles, exhibiting a broad size distribution from a few nanometers to several hundred nanometers, as confirmed by electron microscopy. An X-ray diffraction analysis identified the coexistence of crystalline gold and hexagonal graphite phases, with no detectable impurity phases.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 17","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12430493/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15171363","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study demonstrates a novel route to synthesize gold-decorated exfoliated graphite (EG) through graphite intercalation compounds (GICs) with tetrachloroauric acid (HAuCl4). We aimed to develop a scalable method for producing EG/Au composites with controlled nanoparticle morphology by investigating the effects of precursor chemistry and thermal expansion conditions. II-stage GIC-HAuCl4 (average gross-composition: C23HAuCl4; intercalate layer thickness di = 6.85 Å) was prepared via an exchange reaction of HAuCl4 with graphite nitrate. Interaction of this GIC with liquid methylamine yielded an occlusive complex, where methylamine-bound HAuCl4 occupies both interlayer and intercrystalline spaces in the graphite matrix. Methylamine treatment of GIC reduces the onset temperature of exfoliation by ≈100 °C and enhances the expansion efficiency, yielding EG with a low bulk density range of 4-6 g/L when processed at 900 °C in air or nitrogen. Thermal exfoliation of these GICs yielded EG decorated with gold nanoparticles, exhibiting a broad size distribution from a few nanometers to several hundred nanometers, as confirmed by electron microscopy. An X-ray diffraction analysis identified the coexistence of crystalline gold and hexagonal graphite phases, with no detectable impurity phases.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.