{"title":"Mitochondrial DNA variants in normal skins: Insights into prevalent pathogenic variants and quality control surveillance","authors":"Kohta Nakamura , Yasunari Sato , Masao Hashimoto , Naoyuki Matsumoto , Sachiko Nitta , Yasushi Okazaki , Yasuo Miyoshi , Hiroki Nagase","doi":"10.1016/j.mito.2025.102081","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial genome diversity in normal tissues remains poorly understood due to 100 to 1000 copies of mitochondrial DNA in a cell. This study analyzed mitochondrial DNA variants in two distant sites of normal skin tissues from 119 breast surgery cases using deep sequencing. We identified 1337 variants across the mitochondrial genome (59.1 % in coding region). Intriguingly variants were categorized two groups, homoplasmic (81.1 %) or low heteroplasmy rate group (14.1 %). Even MITOMAP pathogenic variants, two out of eight were homoplasmic, common in several patients, and found in both skin sites of the same individual, while six heteroplasmic pathogenic variants were identified in a single patient with < 5 % heteroplasmy rates, half only detected in a single skin site with < 2 % rates. Pathogenic mutations predicted by AlphaMissense were significantly less common in the homoplasmic group (30/1085) but more common in the heteroplasmic group (216/431). Significant increases of mitochondrial copy number were also repeatedly detected in cases with pathogenic variants. This study provides new insights into the diversity of mitochondrial genome and the complexity of mitochondrial homeostasis in normal skin tissue, including the possibility of evading pathogenic mutations through quality control surveillance and the restoration of mitochondrial function due to increase in copy number.</div></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"85 ","pages":"Article 102081"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567724925000789","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial genome diversity in normal tissues remains poorly understood due to 100 to 1000 copies of mitochondrial DNA in a cell. This study analyzed mitochondrial DNA variants in two distant sites of normal skin tissues from 119 breast surgery cases using deep sequencing. We identified 1337 variants across the mitochondrial genome (59.1 % in coding region). Intriguingly variants were categorized two groups, homoplasmic (81.1 %) or low heteroplasmy rate group (14.1 %). Even MITOMAP pathogenic variants, two out of eight were homoplasmic, common in several patients, and found in both skin sites of the same individual, while six heteroplasmic pathogenic variants were identified in a single patient with < 5 % heteroplasmy rates, half only detected in a single skin site with < 2 % rates. Pathogenic mutations predicted by AlphaMissense were significantly less common in the homoplasmic group (30/1085) but more common in the heteroplasmic group (216/431). Significant increases of mitochondrial copy number were also repeatedly detected in cases with pathogenic variants. This study provides new insights into the diversity of mitochondrial genome and the complexity of mitochondrial homeostasis in normal skin tissue, including the possibility of evading pathogenic mutations through quality control surveillance and the restoration of mitochondrial function due to increase in copy number.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.