Development of Diagnostic and Predictive Models for COPD Based on Anoikis Resistance.

IF 4.1 2区 医学 Q2 IMMUNOLOGY
Journal of Inflammation Research Pub Date : 2025-09-06 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S534626
Wenmin Hu, Jingjing Sun, Mei Wang, Yaoyao Wang, Chaohui Mu, Xinjuan Yu, Peng Yuan, Wei Han, Yongchun Li, Qinghai Li
{"title":"Development of Diagnostic and Predictive Models for COPD Based on Anoikis Resistance.","authors":"Wenmin Hu, Jingjing Sun, Mei Wang, Yaoyao Wang, Chaohui Mu, Xinjuan Yu, Peng Yuan, Wei Han, Yongchun Li, Qinghai Li","doi":"10.2147/JIR.S534626","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic obstructive pulmonary disease (COPD) pathogenesis involves persistent airway inflammation and remodeling, yet the role of anoikis resistance remains poorly characterized. This study aimed to identify anoikis resistance-related hub genes and evaluate their clinical utility in COPD phenotyping and prognosis.</p><p><strong>Methods: </strong>Integrated bioinformatics analysis of the GSE11906 dataset identified anoikis resistance-related differentially expressed genes (DEGs). Functional enrichment, LASSO regression, and machine learning (RF, SVM, XGB, GLM) were employed to pinpoint core hub genes. Multi-level validation included external datasets (GSE19407), in vitro (CSE-stimulated 16HBE cells), in vivo (cigarette smoke-exposed mice), and clinical samples (PBMCs). Diagnostic and prognostic models were developed using logistic regression.</p><p><strong>Results: </strong>Five core hub genes (UCHL1, ME1, SLC2A1, BMP4, CRABP2) were identified, with ME1, SLC2A1, and BMP4 consistently upregulated in COPD across models and strongly correlated with emphysema index (negative, R = -0.41 to -0.45) and airway wall thickness (positive, R = 0.40-0.45). These genes exhibited significant associations with peribronchial immune cell infiltration. Diagnostic models for emphysema-predominant COPD (AUC = 0.860) and disease staging (AUC = 0.882), along with a prognostic model for hospitalization duration (AUC = 0.867), demonstrated robust clinical performance.</p><p><strong>Conclusion: </strong>ME1, SLC2A1, and BMP4 are pivotal anoikis resistance-related biomarkers in COPD, driving immune dysregulation and structural remodeling. The developed models enable precise phenotyping, severity stratification, and personalized prognosis prediction, advancing precision medicine strategies for COPD management.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"12263-12278"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12422139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S534626","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chronic obstructive pulmonary disease (COPD) pathogenesis involves persistent airway inflammation and remodeling, yet the role of anoikis resistance remains poorly characterized. This study aimed to identify anoikis resistance-related hub genes and evaluate their clinical utility in COPD phenotyping and prognosis.

Methods: Integrated bioinformatics analysis of the GSE11906 dataset identified anoikis resistance-related differentially expressed genes (DEGs). Functional enrichment, LASSO regression, and machine learning (RF, SVM, XGB, GLM) were employed to pinpoint core hub genes. Multi-level validation included external datasets (GSE19407), in vitro (CSE-stimulated 16HBE cells), in vivo (cigarette smoke-exposed mice), and clinical samples (PBMCs). Diagnostic and prognostic models were developed using logistic regression.

Results: Five core hub genes (UCHL1, ME1, SLC2A1, BMP4, CRABP2) were identified, with ME1, SLC2A1, and BMP4 consistently upregulated in COPD across models and strongly correlated with emphysema index (negative, R = -0.41 to -0.45) and airway wall thickness (positive, R = 0.40-0.45). These genes exhibited significant associations with peribronchial immune cell infiltration. Diagnostic models for emphysema-predominant COPD (AUC = 0.860) and disease staging (AUC = 0.882), along with a prognostic model for hospitalization duration (AUC = 0.867), demonstrated robust clinical performance.

Conclusion: ME1, SLC2A1, and BMP4 are pivotal anoikis resistance-related biomarkers in COPD, driving immune dysregulation and structural remodeling. The developed models enable precise phenotyping, severity stratification, and personalized prognosis prediction, advancing precision medicine strategies for COPD management.

基于Anoikis耐药性的COPD诊断和预测模型的建立。
背景:慢性阻塞性肺疾病(COPD)的发病机制涉及持续气道炎症和重塑,但anoikis抵抗的作用仍不清楚。本研究旨在鉴定anoikis耐药相关中心基因,并评估其在COPD表型和预后中的临床应用。方法:对GSE11906数据集进行综合生物信息学分析,鉴定出anoikis耐药相关差异表达基因(DEGs)。利用功能富集、LASSO回归和机器学习(RF、SVM、XGB、GLM)来定位核心枢纽基因。多层次验证包括外部数据集(GSE19407)、体外(cse刺激的16HBE细胞)、体内(香烟烟雾暴露小鼠)和临床样本(PBMCs)。使用逻辑回归建立诊断和预后模型。结果:共鉴定出5个核心枢纽基因(UCHL1、ME1、SLC2A1、BMP4、CRABP2),其中ME1、SLC2A1和BMP4在COPD各模型中均呈持续上调,且与肺气肿指数(负相关,R = -0.41 ~ -0.45)和气道壁厚(正相关,R = 0.40 ~ 0.45)密切相关。这些基因与支气管周围免疫细胞浸润有显著相关性。肺气肿为主的COPD诊断模型(AUC = 0.860)和疾病分期(AUC = 0.882)以及住院时间预后模型(AUC = 0.867)均显示出良好的临床表现。结论:ME1、SLC2A1和BMP4是COPD中关键的抗药相关生物标志物,驱动免疫失调和结构重塑。开发的模型可以实现精确的表型,严重程度分层和个性化预后预测,推进COPD管理的精准医学策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信