Mario Alejandro Vallejo Pat, Harriet Ezekiel-Hart, Camilah D Powell
{"title":"Nanomaterial Solutions for Environmental Applications and Bacteriological Threats: The Role of Laser-Induced Graphene.","authors":"Mario Alejandro Vallejo Pat, Harriet Ezekiel-Hart, Camilah D Powell","doi":"10.3390/nano15171377","DOIUrl":null,"url":null,"abstract":"<p><p>Laser-induced graphene (LIG) is a high-quality graphene material produced by laser scribing. It has garnered significant attention as a solution to various growing global concerns, such as biological threats, energy scarcity, and environmental contamination due to its high conductivity, tunable surface chemistry, and ease of synthesis from a variety of carbonaceous substrates. This review provides a survey of recent advances in LIG applications for energy storage, heavy metal adsorption, water purification, and antimicrobial materials. As a part of this, we discuss the most recent research efforts to develop LIG as (1) sensors to detect heavy metals at ultralow detection limits, (2) as membranes capable of salt and bacteria rejection, and (3) antimicrobial materials capable of bacterial inactivation efficiencies of up to 99.998%. Additionally, due to its wide surface area, electrochemical stability, and rapid charge conduction, we report on the current body of literature that showcases the potential of LIG within energy storage applications (e.g., batteries and supercapacitors). All in all, this critical review highlights the findings and promise of LIG as an emerging next-generation material for integrated biomedical, energy, and environmental technologies and identifies the key knowledge gaps and technological obstacles that currently hinder the full-scale implementation of LIG in each field.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 17","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12430609/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15171377","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser-induced graphene (LIG) is a high-quality graphene material produced by laser scribing. It has garnered significant attention as a solution to various growing global concerns, such as biological threats, energy scarcity, and environmental contamination due to its high conductivity, tunable surface chemistry, and ease of synthesis from a variety of carbonaceous substrates. This review provides a survey of recent advances in LIG applications for energy storage, heavy metal adsorption, water purification, and antimicrobial materials. As a part of this, we discuss the most recent research efforts to develop LIG as (1) sensors to detect heavy metals at ultralow detection limits, (2) as membranes capable of salt and bacteria rejection, and (3) antimicrobial materials capable of bacterial inactivation efficiencies of up to 99.998%. Additionally, due to its wide surface area, electrochemical stability, and rapid charge conduction, we report on the current body of literature that showcases the potential of LIG within energy storage applications (e.g., batteries and supercapacitors). All in all, this critical review highlights the findings and promise of LIG as an emerging next-generation material for integrated biomedical, energy, and environmental technologies and identifies the key knowledge gaps and technological obstacles that currently hinder the full-scale implementation of LIG in each field.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.