{"title":"Molecular signature of cadmium-mediated neurodevelopmental disorders in prenatal to postnatal stages.","authors":"Sabiha Sultana Preety, Fahim Rejanur Tasin, Amit Sarder, Debasish Halder, Farjana Yasmin, Chanchal Mandal","doi":"10.17179/excli2025-8322","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium can surpass fetal circulation and the blood-brain barrier due to its similar physicochemical properties to those of other divalent metals and causes diverse neuronal disorders. Previous reports have suggested a possible link between epigenetic alterations and neuronal changes in offspring due to cadmium exposure at different developmental stages. Hypermethylation of the glucocorticoid receptor NR3C1 disturbs the development of the hypothalamic-pituitary-adrenal axis, which in turn is responsible for the abnormal cognitive behavior of neonates. In addition, the upregulation of placental miR-509-3p and miR-193-5p expression was found to be the major cause of impaired development of the central nervous system. In this review, the epigenetic mechanism of cadmium-mediated neurotoxicity is described. Moreover, the journey of cadmium from the maternal body to the fetal body through circulation and to the neonatal body through breast milk is also tracked. The vulnerability of developing fetuses to cadmium is an alarming issue. Different types of epigenetic changes, such as DNA methylation, altered miRNA expression and histone modifications, are induced by cadmium and lead to various types of neurodevelopmental disorders. We hope this narrative review will provide distinct knowledge of the transportation of cadmium and its adverse effects on fetal neurodevelopment. See also the graphical abstract(Fig. 1).</p>","PeriodicalId":12247,"journal":{"name":"EXCLI Journal","volume":"24 ","pages":"797-823"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EXCLI Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.17179/excli2025-8322","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium can surpass fetal circulation and the blood-brain barrier due to its similar physicochemical properties to those of other divalent metals and causes diverse neuronal disorders. Previous reports have suggested a possible link between epigenetic alterations and neuronal changes in offspring due to cadmium exposure at different developmental stages. Hypermethylation of the glucocorticoid receptor NR3C1 disturbs the development of the hypothalamic-pituitary-adrenal axis, which in turn is responsible for the abnormal cognitive behavior of neonates. In addition, the upregulation of placental miR-509-3p and miR-193-5p expression was found to be the major cause of impaired development of the central nervous system. In this review, the epigenetic mechanism of cadmium-mediated neurotoxicity is described. Moreover, the journey of cadmium from the maternal body to the fetal body through circulation and to the neonatal body through breast milk is also tracked. The vulnerability of developing fetuses to cadmium is an alarming issue. Different types of epigenetic changes, such as DNA methylation, altered miRNA expression and histone modifications, are induced by cadmium and lead to various types of neurodevelopmental disorders. We hope this narrative review will provide distinct knowledge of the transportation of cadmium and its adverse effects on fetal neurodevelopment. See also the graphical abstract(Fig. 1).
期刊介绍:
EXCLI Journal publishes original research reports, authoritative reviews and case reports of experimental and clinical sciences.
The journal is particularly keen to keep a broad view of science and technology, and therefore welcomes papers which bridge disciplines and may not suit the narrow specialism of other journals. Although the general emphasis is on biological sciences, studies from the following fields are explicitly encouraged (alphabetical order):
aging research, behavioral sciences, biochemistry, cell biology, chemistry including analytical chemistry, clinical and preclinical studies, drug development, environmental health, ergonomics, forensic medicine, genetics, hepatology and gastroenterology, immunology, neurosciences, occupational medicine, oncology and cancer research, pharmacology, proteomics, psychiatric research, psychology, systems biology, toxicology