Exploring the role of mTOR pathway in aging and age-related disorders.

IF 4.9 3区 生物学 Q1 BIOLOGY
EXCLI Journal Pub Date : 2025-08-04 eCollection Date: 2025-01-01 DOI:10.17179/excli2025-8384
Komal Raghuvanshi, Disha Raghuvanshi, Dinesh Kumar, Eugenie Nepovimova, Marian Valko, Kamil Kuca, Rachna Verma
{"title":"Exploring the role of mTOR pathway in aging and age-related disorders.","authors":"Komal Raghuvanshi, Disha Raghuvanshi, Dinesh Kumar, Eugenie Nepovimova, Marian Valko, Kamil Kuca, Rachna Verma","doi":"10.17179/excli2025-8384","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a highly intricate biochemical process. There is strong evidence suggesting that organismal aging, age-dependent diseases, and cellular senescence are related to the mammalian target of rapamycin (mTOR) signaling pathway. The signaling pathway of mTOR has become a prominent regulatory hub, managing crucial cellular activities that significantly affect lifespan and longevity. The mTOR is involved in controlling cell growth and metabolism in response to both internal and external energy signals as well as growth factors. The interaction between mTOR and cellular homeostasis is crucial in the aging process. This extensive review summarizes the most recent findings on mTOR inhibitors in the context of aging, highlighting their complex interactions with cellular systems, effect on longevity, and potential as therapeutic approaches for age-related diseases. Rapamycin and rapalogs (analogs of rapamycin), which have been proven to be effective mTOR inhibitors, have the ability to reduce the aging process in several model species while also enhancing metabolic health and stress responses. Despite cellular factors, mTOR inhibitors have revealed a potential path for therapeutics in age-related illnesses. These results suggest mTOR inhibitors as potential therapies to address the complex aspects of age-related diseases. However, obstacles stand in the way of clinical translation. Further research is required to improve dosing protocols, reduce potential side effects, and target mTOR inhibitors precisely at specific tissues. In summary, the mTOR signaling pathway is an important node in the intricate web of aging and its associated disorders.</p>","PeriodicalId":12247,"journal":{"name":"EXCLI Journal","volume":"24 ","pages":"992-1015"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419451/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EXCLI Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.17179/excli2025-8384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is a highly intricate biochemical process. There is strong evidence suggesting that organismal aging, age-dependent diseases, and cellular senescence are related to the mammalian target of rapamycin (mTOR) signaling pathway. The signaling pathway of mTOR has become a prominent regulatory hub, managing crucial cellular activities that significantly affect lifespan and longevity. The mTOR is involved in controlling cell growth and metabolism in response to both internal and external energy signals as well as growth factors. The interaction between mTOR and cellular homeostasis is crucial in the aging process. This extensive review summarizes the most recent findings on mTOR inhibitors in the context of aging, highlighting their complex interactions with cellular systems, effect on longevity, and potential as therapeutic approaches for age-related diseases. Rapamycin and rapalogs (analogs of rapamycin), which have been proven to be effective mTOR inhibitors, have the ability to reduce the aging process in several model species while also enhancing metabolic health and stress responses. Despite cellular factors, mTOR inhibitors have revealed a potential path for therapeutics in age-related illnesses. These results suggest mTOR inhibitors as potential therapies to address the complex aspects of age-related diseases. However, obstacles stand in the way of clinical translation. Further research is required to improve dosing protocols, reduce potential side effects, and target mTOR inhibitors precisely at specific tissues. In summary, the mTOR signaling pathway is an important node in the intricate web of aging and its associated disorders.

Abstract Image

Abstract Image

Abstract Image

探讨mTOR通路在衰老及年龄相关疾病中的作用。
衰老是一个高度复杂的生化过程。有强有力的证据表明,机体衰老、年龄依赖性疾病和细胞衰老与哺乳动物雷帕霉素靶点(mTOR)信号通路有关。mTOR的信号通路已经成为一个重要的调控中心,管理着显著影响寿命和寿命的关键细胞活动。mTOR参与控制细胞的生长和代谢,以响应内部和外部能量信号以及生长因子。mTOR与细胞稳态之间的相互作用在衰老过程中起着至关重要的作用。这篇广泛的综述总结了mTOR抑制剂在衰老背景下的最新发现,强调了它们与细胞系统的复杂相互作用,对寿命的影响,以及作为年龄相关疾病治疗方法的潜力。雷帕霉素和rapalogs(雷帕霉素类似物)已被证明是有效的mTOR抑制剂,在几种模式物种中具有减缓衰老过程的能力,同时还能增强代谢健康和应激反应。尽管存在细胞因素,但mTOR抑制剂已经揭示了治疗与年龄相关疾病的潜在途径。这些结果表明mTOR抑制剂是解决年龄相关疾病复杂方面的潜在疗法。然而,临床翻译的道路上存在着障碍。需要进一步的研究来改进给药方案,减少潜在的副作用,并将mTOR抑制剂精确地靶向于特定组织。总之,mTOR信号通路是衰老及其相关疾病复杂网络中的一个重要节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EXCLI Journal
EXCLI Journal BIOLOGY-
CiteScore
8.00
自引率
2.20%
发文量
65
审稿时长
6-12 weeks
期刊介绍: EXCLI Journal publishes original research reports, authoritative reviews and case reports of experimental and clinical sciences. The journal is particularly keen to keep a broad view of science and technology, and therefore welcomes papers which bridge disciplines and may not suit the narrow specialism of other journals. Although the general emphasis is on biological sciences, studies from the following fields are explicitly encouraged (alphabetical order): aging research, behavioral sciences, biochemistry, cell biology, chemistry including analytical chemistry, clinical and preclinical studies, drug development, environmental health, ergonomics, forensic medicine, genetics, hepatology and gastroenterology, immunology, neurosciences, occupational medicine, oncology and cancer research, pharmacology, proteomics, psychiatric research, psychology, systems biology, toxicology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信