{"title":"Environmental and genetic risk factors of depression converge on neuronal dysfunction driven by changes in cholesterol homeostasis.","authors":"Polina Oberst, Nan Xu, Hermany Munguba, Chao Zhang, Aaron Zhong, Ting Zhou, Conor Liston, Joshua Levitz, Lorenz Studer","doi":"10.1016/j.devcel.2025.08.011","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a complex, multifactorial neuropsychiatric disorder influenced by both genetic and environmental factors, but how these factors impact human neuronal function remains unclear. Using a highly defined human pluripotent stem cell (hPSC)-based prefrontal cortex (PFC) platform, we examined three high-confidence environmental and genetic factors associated with depression: chronic exposure to high levels of cortisol or interferon alpha (IFN-a), and a mutation in SIRTUIN 1 (SIRT1). All three conditions induced overlapping phenotypes of neuronal dysfunction, characterized by dendritic atrophy, synaptic loss, and neuronal hypoactivity across multiple cell lines. RNA sequencing uncovered converging alterations in neuronal cholesterol homeostasis. Depleting cholesterol in control neurons reproduced core depression-associated neuronal phenotypes, while cholesterol supplementation was sufficient to rescue these phenotypes in depression-associated conditions. These findings point to cholesterol imbalance as a common driver of neuronal dysfunction in MDD, linking diverse genetic and environmental risk factors through a shared cellular pathway.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":" ","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.08.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Major depressive disorder (MDD) is a complex, multifactorial neuropsychiatric disorder influenced by both genetic and environmental factors, but how these factors impact human neuronal function remains unclear. Using a highly defined human pluripotent stem cell (hPSC)-based prefrontal cortex (PFC) platform, we examined three high-confidence environmental and genetic factors associated with depression: chronic exposure to high levels of cortisol or interferon alpha (IFN-a), and a mutation in SIRTUIN 1 (SIRT1). All three conditions induced overlapping phenotypes of neuronal dysfunction, characterized by dendritic atrophy, synaptic loss, and neuronal hypoactivity across multiple cell lines. RNA sequencing uncovered converging alterations in neuronal cholesterol homeostasis. Depleting cholesterol in control neurons reproduced core depression-associated neuronal phenotypes, while cholesterol supplementation was sufficient to rescue these phenotypes in depression-associated conditions. These findings point to cholesterol imbalance as a common driver of neuronal dysfunction in MDD, linking diverse genetic and environmental risk factors through a shared cellular pathway.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.