Genetic Regulation Differences of VRS Genes in the Development of Lateral Spikelets in Two-Rowed Barley.

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Liping Shen, Zhiwen Sun, Yangyang Liu, Kuocheng Shen, Zhimin Wang, Botao Ye, Ziying Wang, Zifeng Guo
{"title":"Genetic Regulation Differences of VRS Genes in the Development of Lateral Spikelets in Two-Rowed Barley.","authors":"Liping Shen, Zhiwen Sun, Yangyang Liu, Kuocheng Shen, Zhimin Wang, Botao Ye, Ziying Wang, Zifeng Guo","doi":"10.1111/pce.70183","DOIUrl":null,"url":null,"abstract":"<p><p>The barley (Hordeum vulgare L.) spike consists of one central and two lateral spikelets at each rachis node. In two-rowed barley, only the central spikelet is fertile, the lateral spikelets also produce grain while in six-rowed barley. Five SIX-ROWED SPIKE genes (VRS1-5) have been identified as regulators of lateral spikelet fertility in barley, but the underlying genetic mechanisms of these VRS genes remain unclear. In this study, we conducted a detailed observation of the development process of the lateral spikelets in two-rowed barley and performed comparative transcriptome analysis to investigate gene expression differences between vrs1-5 mutants and wild-type spikelets. This revealed the differences in the downstream pathways regulated by the VRS genes in lateral spikelet development and the correlation of the effects of different VRS genes on lateral spikelet fertility. Using chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq), we identified 213 direct downstream genes of VRS1, including those involved in energy metabolism, hormone pathways, and transcription factors. We also discovered that VRS1 directly binds to the D-class gene HvMADS13 to regulate spikelet fertility. Further analysis of the six-rowed barley accessions revealed that a 1 bp deletion in the C-terminus of VRS1 disrupts its ability to repress transcription, leading to fertility in the lateral spikelets.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70183","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The barley (Hordeum vulgare L.) spike consists of one central and two lateral spikelets at each rachis node. In two-rowed barley, only the central spikelet is fertile, the lateral spikelets also produce grain while in six-rowed barley. Five SIX-ROWED SPIKE genes (VRS1-5) have been identified as regulators of lateral spikelet fertility in barley, but the underlying genetic mechanisms of these VRS genes remain unclear. In this study, we conducted a detailed observation of the development process of the lateral spikelets in two-rowed barley and performed comparative transcriptome analysis to investigate gene expression differences between vrs1-5 mutants and wild-type spikelets. This revealed the differences in the downstream pathways regulated by the VRS genes in lateral spikelet development and the correlation of the effects of different VRS genes on lateral spikelet fertility. Using chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq), we identified 213 direct downstream genes of VRS1, including those involved in energy metabolism, hormone pathways, and transcription factors. We also discovered that VRS1 directly binds to the D-class gene HvMADS13 to regulate spikelet fertility. Further analysis of the six-rowed barley accessions revealed that a 1 bp deletion in the C-terminus of VRS1 disrupts its ability to repress transcription, leading to fertility in the lateral spikelets.

二棱大麦侧穗发育中VRS基因的遗传调控差异
大麦(Hordeum vulgare L.)穗在每个轴节上由一个中心和两个侧穗组成。在二棱大麦中,只有中央小穗是可育的,而在六棱大麦中,侧小穗也产生籽粒。5个6 - row穗基因(VRS1-5)被鉴定为大麦侧穗育性的调控因子,但这些VRS基因的潜在遗传机制尚不清楚。在本研究中,我们详细观察了二垄大麦侧颖花的发育过程,并进行了比较转录组分析,探讨了vrs1-5突变体与野生型颖花的基因表达差异。这揭示了VRS基因调控侧小穗发育下游通路的差异,以及不同VRS基因对侧小穗育性影响的相关性。通过染色质免疫沉淀测序(ChIP-seq)和RNA测序(RNA-seq),我们鉴定了213个VRS1的直接下游基因,包括参与能量代谢、激素通路和转录因子的基因。我们还发现VRS1直接结合d类基因HvMADS13来调节小穗的育性。对六棱大麦材料的进一步分析表明,VRS1 c端1个bp的缺失破坏了其抑制转录的能力,导致侧颖花的育性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信