Global and microlocal aspects of Dirac operators: Propagators and Hadamard states

IF 0.8 3区 数学 Q2 MATHEMATICS
Matteo Capoferri, Simone Murro
{"title":"Global and microlocal aspects of Dirac operators: Propagators and Hadamard states","authors":"Matteo Capoferri,&nbsp;Simone Murro","doi":"10.1002/mana.12032","DOIUrl":null,"url":null,"abstract":"<p>We propose a geometric approach to construct the Cauchy evolution operator for the Lorentzian Dirac operator on Cauchy-compact globally hyperbolic 4-manifolds. We realize the Cauchy evolution operator as the sum of two invariantly defined oscillatory integrals—the <i>positive</i> and <i>negative</i> Dirac propagators—global in space and in time, with distinguished complex-valued geometric phase functions. As applications, we relate the Cauchy evolution operators with the Feynman propagator and construct Cauchy surfaces covariances of quasifree Hadamard states.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"2942-2974"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12032","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a geometric approach to construct the Cauchy evolution operator for the Lorentzian Dirac operator on Cauchy-compact globally hyperbolic 4-manifolds. We realize the Cauchy evolution operator as the sum of two invariantly defined oscillatory integrals—the positive and negative Dirac propagators—global in space and in time, with distinguished complex-valued geometric phase functions. As applications, we relate the Cauchy evolution operators with the Feynman propagator and construct Cauchy surfaces covariances of quasifree Hadamard states.

Abstract Image

狄拉克算子的全局和微局部方面:传播子和Hadamard状态
提出了一种构造柯西紧致全局双曲4流形上Lorentzian Dirac算子的柯西演化算子的几何方法。我们将柯西演化算子实现为两个不变定义的振荡积分(正狄拉克传播子和负狄拉克传播子)在空间和时间上的和,具有不同的复值几何相函数。作为应用,我们将柯西演化算子与费曼传播子联系起来,构造了拟自由Hadamard态的柯西曲面协方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信