Left Heart Hemodynamics Simulations With Fluid–Structure Interaction and Reduced Valve Modeling

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Oscar Ruz, Jérôme Diaz, Marina Vidrascu, Philippe Moireau, Dominique Chapelle, Miguel A. Fernández
{"title":"Left Heart Hemodynamics Simulations With Fluid–Structure Interaction and Reduced Valve Modeling","authors":"Oscar Ruz,&nbsp;Jérôme Diaz,&nbsp;Marina Vidrascu,&nbsp;Philippe Moireau,&nbsp;Dominique Chapelle,&nbsp;Miguel A. Fernández","doi":"10.1002/cnm.70088","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The combination of reduced models of cardiac valve dynamics with a one-way kinematic uncoupling of blood flow and electromechanics is a widespread approach for reducing the complexity of cardiac hemodynamics simulations. This comes, however, with a number of shortcomings: artificial pressure oscillations, missing isovolumetric phases, and valve laws without precise continuous formulation. This paper is aimed at overcoming these three difficulties while still mitigating computational cost. A novel reduced model of valve dynamics is proposed in which unidirectional flow is enforced in a mathematically sound fashion. Artificial pressure oscillations are overcome by considering a fluid–structure interaction model, which couples bi-ventricular electromechanics and blood flow in the left cavities. The interface coupling is solved in a partitioned fashion via an unconditionally stable loosely coupled scheme. A priori energy estimates are derived for both the continuous coupled problem and its numerical approximation. The benefits and limitations of the proposed approaches are illustrated in a comprehensive numerical study.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 9","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70088","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of reduced models of cardiac valve dynamics with a one-way kinematic uncoupling of blood flow and electromechanics is a widespread approach for reducing the complexity of cardiac hemodynamics simulations. This comes, however, with a number of shortcomings: artificial pressure oscillations, missing isovolumetric phases, and valve laws without precise continuous formulation. This paper is aimed at overcoming these three difficulties while still mitigating computational cost. A novel reduced model of valve dynamics is proposed in which unidirectional flow is enforced in a mathematically sound fashion. Artificial pressure oscillations are overcome by considering a fluid–structure interaction model, which couples bi-ventricular electromechanics and blood flow in the left cavities. The interface coupling is solved in a partitioned fashion via an unconditionally stable loosely coupled scheme. A priori energy estimates are derived for both the continuous coupled problem and its numerical approximation. The benefits and limitations of the proposed approaches are illustrated in a comprehensive numerical study.

基于流固耦合和减压阀建模的左心血流动力学模拟
将心脏瓣膜动力学简化模型与血流和电力学的单向运动学解耦相结合是降低心脏血流动力学模拟复杂性的一种广泛的方法。然而,这也带来了一些缺点:人工压力振荡,缺少等体积相,以及没有精确连续公式的阀门规律。本文旨在克服这三个困难,同时仍然减少计算成本。提出了一种新颖的阀门动力学简化模型,其中单向流动以数学上合理的方式强制执行。通过考虑流体-结构相互作用模型来克服人工压力振荡,该模型将双心室电力学和左腔血流耦合在一起。通过一个无条件稳定的松耦合方案,以分区的方式解决了接口耦合问题。对于连续耦合问题及其数值近似,导出了先验的能量估计。在一个全面的数值研究中说明了所提出的方法的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信