A Comprehensive Analysis of Optical Emissions, Production of NOx, HOx, and Other Chemical Species by Lightning

IF 3.4 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Francisco J. Pérez-Invernón, Jean-Francois Ripoll, Francisco J. Gordillo-Vázquez, Alejandro Luque, Pablo A. Camino-Faillace, Dongshuai Li, Torsten Neubert, Olivier Chanrion, Nikolai Østgaard
{"title":"A Comprehensive Analysis of Optical Emissions, Production of NOx, HOx, and Other Chemical Species by Lightning","authors":"Francisco J. Pérez-Invernón,&nbsp;Jean-Francois Ripoll,&nbsp;Francisco J. Gordillo-Vázquez,&nbsp;Alejandro Luque,&nbsp;Pablo A. Camino-Faillace,&nbsp;Dongshuai Li,&nbsp;Torsten Neubert,&nbsp;Olivier Chanrion,&nbsp;Nikolai Østgaard","doi":"10.1029/2025JD043972","DOIUrl":null,"url":null,"abstract":"<p>We analyze lightning optical emissions and their production of different chemical species with particular emphasis on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NO</mtext>\n <mi>x</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{NO}}_{x}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>HO</mtext>\n <mi>x</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{HO}}_{x}$</annotation>\n </semantics></math>. We calculate synthetic lightning spectra with inputs from an electrodynamical model of hot air lightning plasmas. The electrodynamical model calculates the temporal and radial evolution of plasma parameters and chemical species. We analyze 26 lightning-like discharges modeled between 0 and 16 km altitude, varying the input energy between 4 and 200 J/cm, the initial radius, the initial mass, and the humidity. We use a simplified model to estimate the peak current corresponding to each input energy. The ratio of the production of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>HO</mtext>\n <mi>x</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{HO}}_{x}$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NO</mtext>\n <mi>x</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{NO}}_{x}$</annotation>\n </semantics></math> obtained in this study for saturated air ranges between <span></span><math>\n <semantics>\n <mrow>\n <mn>5</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mrow>\n <mo>−</mo>\n <mn>5</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $5\\times 1{0}^{-5}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mn>2.3</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $2.3\\times 1{0}^{-1}$</annotation>\n </semantics></math> strongly influenced by air humidity, which is in better agreement with laboratory measurements than previous modeling results. We calculate the synthetic optical emissions of an exposed lightning section. We compare the simulated peaks in the 777.4 nm and the 337.0 nm photon fluxes with observations of shallow and exposed lightning by the Atmosphere–Space Interactions Monitor (ASIM). Our simulations of hot lightning plasmas result in negligible thermal (due to ions) 337.0 nm optical emissions below 30 kA peak current. This indicates that 337.0 nm optical emissions detected by ASIM are mainly produced by lightning streamers instead of by thermally produced ionic lines in lightning. Finally, we found that the hot lightning channel produces a significant amount of Vacuum Ultraviolet photons that can travel outside the channel to produce non-negligible amounts of OH by photodissociation of water.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 18","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JD043972","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JD043972","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze lightning optical emissions and their production of different chemical species with particular emphasis on NO x ${\text{NO}}_{x}$ and HO x ${\text{HO}}_{x}$ . We calculate synthetic lightning spectra with inputs from an electrodynamical model of hot air lightning plasmas. The electrodynamical model calculates the temporal and radial evolution of plasma parameters and chemical species. We analyze 26 lightning-like discharges modeled between 0 and 16 km altitude, varying the input energy between 4 and 200 J/cm, the initial radius, the initial mass, and the humidity. We use a simplified model to estimate the peak current corresponding to each input energy. The ratio of the production of HO x ${\text{HO}}_{x}$ to NO x ${\text{NO}}_{x}$ obtained in this study for saturated air ranges between 5 × 1 0 5 $5\times 1{0}^{-5}$ and 2.3 × 1 0 1 $2.3\times 1{0}^{-1}$ strongly influenced by air humidity, which is in better agreement with laboratory measurements than previous modeling results. We calculate the synthetic optical emissions of an exposed lightning section. We compare the simulated peaks in the 777.4 nm and the 337.0 nm photon fluxes with observations of shallow and exposed lightning by the Atmosphere–Space Interactions Monitor (ASIM). Our simulations of hot lightning plasmas result in negligible thermal (due to ions) 337.0 nm optical emissions below 30 kA peak current. This indicates that 337.0 nm optical emissions detected by ASIM are mainly produced by lightning streamers instead of by thermally produced ionic lines in lightning. Finally, we found that the hot lightning channel produces a significant amount of Vacuum Ultraviolet photons that can travel outside the channel to produce non-negligible amounts of OH by photodissociation of water.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

闪电产生的光发射、NOx、HOx和其他化学物质的综合分析
我们分析了不同化学物质的闪电光发射及其产生,特别强调了NO x ${\text{NO}}_{x}$和HO x ${\text{HO}}_{x}$。利用热空气闪电等离子体电动力学模型的输入,计算了合成闪电光谱。电动力学模型计算等离子体参数和化学物质的时间和径向演化。我们分析了在0到16 km高度之间模拟的26个闪电状放电,改变了输入能量在4到200 J/cm之间,初始半径,初始质量和湿度。我们使用一个简化的模型来估计每个输入能量对应的峰值电流。在饱和空气条件下,本研究得到的HO x ${\text{HO}}_{x}$与NO x ${\text{NO}}_{x}$之间的比值5 × 10 0−5 $5\乘以1{0}^{-5}$和2.3 × 10 0-1 $2.3\乘以1{0}^{-1}$受空气湿度的强烈影响,与以前的建模结果相比,这与实验室测量结果更吻合。我们计算了一个暴露的闪电部分的合成光发射。我们将模拟的777.4 nm和337.0 nm的光子通量峰值与大气-空间相互作用监测仪(ASIM)对浅层和暴露闪电的观测结果进行了比较。我们对热闪电等离子体的模拟结果表明,在30ka峰值电流下,337.0 nm光发射的热(由于离子)可以忽略不计。这表明ASIM探测到的337.0 nm光发射主要是由闪电流光产生的,而不是闪电中热产生的离子线。最后,我们发现热闪电通道产生了大量的真空紫外线光子,这些光子可以在通道外传播,通过水的光解作用产生不可忽略的OH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信