Exploring How Cracks Grow in PLA With Dual Keyhole Notches: Blending Experiments, Simulations, and Smart Predictions

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Naser Kordani, Mohammad Khodabandeh, Ehsan Jahani, Luma Ali Shahid Ali Almusawi
{"title":"Exploring How Cracks Grow in PLA With Dual Keyhole Notches: Blending Experiments, Simulations, and Smart Predictions","authors":"Naser Kordani,&nbsp;Mohammad Khodabandeh,&nbsp;Ehsan Jahani,&nbsp;Luma Ali Shahid Ali Almusawi","doi":"10.1002/eng2.70324","DOIUrl":null,"url":null,"abstract":"<p>Polylactic acid (PLA), a biodegradable polymer, is gaining attention as a sustainable alternative to steel in civil engineering, yet its fracture behavior under complex loading remains underexplored. This study examines crack propagation in PLA samples with dual keyhole notches under tensile loading, integrating experimental tests, finite element simulations, and machine learning predictions. Six PLA specimens (200 × 50 × 10 mm, crack length 10 mm, angles 60° and 70°, notch radii 0.5–2 mm) were tested experimentally, while 400 samples (angles 1°–80°, radii 0.5–4 mm) were simulated in ABAQUS. Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM) models, implemented in MATLAB, analyzed the results. Experimental peak stress reached 33.3 N/mm<sup>2</sup> (0.5 mm notch, 60°), while simulations predicted up to 65.225 N/mm<sup>2</sup> (0.5 mm, 1°). ANN with Bayesian Regularization outperformed other models, offering precise predictions of crack behavior. These findings provide a fracture criterion for PLA, advancing its potential in sustainable structural applications.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70324","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Polylactic acid (PLA), a biodegradable polymer, is gaining attention as a sustainable alternative to steel in civil engineering, yet its fracture behavior under complex loading remains underexplored. This study examines crack propagation in PLA samples with dual keyhole notches under tensile loading, integrating experimental tests, finite element simulations, and machine learning predictions. Six PLA specimens (200 × 50 × 10 mm, crack length 10 mm, angles 60° and 70°, notch radii 0.5–2 mm) were tested experimentally, while 400 samples (angles 1°–80°, radii 0.5–4 mm) were simulated in ABAQUS. Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM) models, implemented in MATLAB, analyzed the results. Experimental peak stress reached 33.3 N/mm2 (0.5 mm notch, 60°), while simulations predicted up to 65.225 N/mm2 (0.5 mm, 1°). ANN with Bayesian Regularization outperformed other models, offering precise predictions of crack behavior. These findings provide a fracture criterion for PLA, advancing its potential in sustainable structural applications.

Abstract Image

探索裂纹如何在PLA与双锁孔缺口增长:混合实验,模拟和智能预测
聚乳酸(PLA)是一种可生物降解的聚合物,作为钢的可持续替代品在土木工程中越来越受到关注,但其在复杂载荷下的断裂行为仍未得到充分研究。本研究结合实验测试、有限元模拟和机器学习预测,研究了具有双锁孔缺口的PLA样品在拉伸载荷下的裂纹扩展。实验测试了6个PLA试样(200 × 50 × 10 mm,裂纹长度10 mm,角度60°和70°,缺口半径0.5 ~ 2 mm),并在ABAQUS中模拟了400个试样(角度1°~ 80°,半径0.5 ~ 4 mm)。在MATLAB中实现了人工神经网络(ANN)和长短期记忆(LSTM)模型,对结果进行了分析。实验峰值应力达到33.3 N/mm2 (0.5 mm缺口,60°),而模拟峰值应力达到65.225 N/mm2 (0.5 mm, 1°)。具有贝叶斯正则化的人工神经网络优于其他模型,提供了精确的裂纹行为预测。这些发现为PLA提供了断裂标准,提高了其在可持续结构应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信