The Minkowski inequalities for ( p , α ) $(p,\alpha)$ -torsional rigidity and the extensions on Orlicz spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Zhen-Hui Bu, Meng Qin, Denghui Wu
{"title":"The Minkowski inequalities for \n \n \n (\n p\n ,\n α\n )\n \n $(p,\\alpha)$\n -torsional rigidity and the extensions on Orlicz spaces","authors":"Zhen-Hui Bu,&nbsp;Meng Qin,&nbsp;Denghui Wu","doi":"10.1002/mana.70032","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the functional Minkowski inequality for <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(p,\\alpha)$</annotation>\n </semantics></math>-torsional rigidity under suitable regularity assumptions, where <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(p,\\alpha)$</annotation>\n </semantics></math>-torsional rigidity can be formulated as the weak solution of an elliptic boundary value problem of the <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-Laplacian. We also establish the Orlicz Brunn–Minkowski and Orlicz Minkowski inequalities for <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(p,\\alpha)$</annotation>\n </semantics></math>-torsional rigidity, which are extensions of the Brunn–Minkowski and Minkowski inequalities for torsional rigidity. Finally, we describe the equivalence between the Orlicz Brunn–Minkowski inequality and the Orlicz Minkowski inequality.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3191-3209"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70032","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the functional Minkowski inequality for ( p , α ) $(p,\alpha)$ -torsional rigidity under suitable regularity assumptions, where ( p , α ) $(p,\alpha)$ -torsional rigidity can be formulated as the weak solution of an elliptic boundary value problem of the p $p$ -Laplacian. We also establish the Orlicz Brunn–Minkowski and Orlicz Minkowski inequalities for ( p , α ) $(p,\alpha)$ -torsional rigidity, which are extensions of the Brunn–Minkowski and Minkowski inequalities for torsional rigidity. Finally, we describe the equivalence between the Orlicz Brunn–Minkowski inequality and the Orlicz Minkowski inequality.

(p, α)$ (p,\ α)$ -扭转刚度的Minkowski不等式及其在Orlicz空间上的扩展
在适当的正则性假设下,证明了(p, α)$ (p,\ α)$ -扭转刚度的泛函Minkowski不等式,其中(p,α)$ (p,\ α)$ -扭转刚度可以表示为p$ p$ -拉普拉斯算子椭圆边值问题的弱解。我们还建立了(p, α)$ (p,\ α)$ -扭转刚度的Orlicz Brunn-Minkowski和Orlicz Minkowski不等式,它们是扭转刚度的Brunn-Minkowski和Minkowski不等式的推广。最后,我们描述了Orlicz Brunn-Minkowski不等式与Orlicz Minkowski不等式之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信