Estimates for approximation characteristics of Nikol'skii–Besov classes of functions with mixed smoothness in the space B q , 1 ${B_{q,1}}$

IF 0.8 3区 数学 Q2 MATHEMATICS
K. V. Pozharska, A. S. Romanyuk
{"title":"Estimates for approximation characteristics of Nikol'skii–Besov classes of functions with mixed smoothness in the space \n \n \n B\n \n q\n ,\n 1\n \n \n ${B_{q,1}}$","authors":"K. V. Pozharska,&nbsp;A. S. Romanyuk","doi":"10.1002/mana.70027","DOIUrl":null,"url":null,"abstract":"<p>Exact-order estimates are obtained for some approximation characteristics of the classes of periodic multivariate functions with mixed smoothness (the Nikol'skii–Besov classes <span></span><math>\n <semantics>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n </mrow>\n <mi>r</mi>\n </msubsup>\n <annotation>$B^{\\bm{r}}_{p, \\theta }$</annotation>\n </semantics></math>) in the space <span></span><math>\n <semantics>\n <msub>\n <mi>B</mi>\n <mrow>\n <mi>q</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$B_{q,1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\le p, q \\le \\infty$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>θ</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\le \\theta \\le \\infty$</annotation>\n </semantics></math>, whose norm is stronger than the <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>q</mi>\n </msub>\n <annotation>$L_q$</annotation>\n </semantics></math>-norm. It is shown that in the multivariate case (in contrast to the univariate) in most of the considered situations the obtained estimates differ in order from the corresponding estimates in the space <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>q</mi>\n </msub>\n <annotation>$L_q$</annotation>\n </semantics></math>. Besides, a significant progress is made in estimates for the considered approximation characteristics of the classes <span></span><math>\n <semantics>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n </mrow>\n <mi>r</mi>\n </msubsup>\n <annotation>$B^{\\bm{r}}_{p, \\theta }$</annotation>\n </semantics></math> in the space <span></span><math>\n <semantics>\n <msub>\n <mi>B</mi>\n <mrow>\n <mi>q</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$B_{q, 1}$</annotation>\n </semantics></math> comparing to the known estimates in the space <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>q</mi>\n </msub>\n <annotation>$L_q$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3114-3134"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Exact-order estimates are obtained for some approximation characteristics of the classes of periodic multivariate functions with mixed smoothness (the Nikol'skii–Besov classes B p , θ r $B^{\bm{r}}_{p, \theta }$ ) in the space B q , 1 $B_{q,1}$ , 1 p , q $1 \le p, q \le \infty$ , 1 θ $1\le \theta \le \infty$ , whose norm is stronger than the L q $L_q$ -norm. It is shown that in the multivariate case (in contrast to the univariate) in most of the considered situations the obtained estimates differ in order from the corresponding estimates in the space L q $L_q$ . Besides, a significant progress is made in estimates for the considered approximation characteristics of the classes B p , θ r $B^{\bm{r}}_{p, \theta }$ in the space B q , 1 $B_{q, 1}$ comparing to the known estimates in the space L q $L_q$ .

空间bq,1 ${B_{q,1}}$中混合光滑函数Nikol 'skii-Besov类的逼近特征估计
得到了混合光滑周期多元函数类(Nikol 'skii-Besov类B p, B p, B p)的一些近似特征的正序估计。θ r $B^{\bm{r}}_{p, \theta }$)在空间B q, 1 $B_{q,1}$, 1≤p,q≤∞$1 \le p, q \le \infty$, 1≤θ≤∞$1\le \theta \le \infty$,其范数强于L q $L_q$ -范数。结果表明,在多元情况下(与单变量情况相反),在大多数考虑的情况下,得到的估计与空间lq $L_q$中相应的估计顺序不同。此外,在对B q空间中B p, θ r $B^{\bm{r}}_{p, \theta }$类所考虑的近似特性的估计方面取得了重大进展。1 $B_{q, 1}$与空间lq $L_q$中已知的估计值进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信