{"title":"Estimates for approximation characteristics of Nikol'skii–Besov classes of functions with mixed smoothness in the space \n \n \n B\n \n q\n ,\n 1\n \n \n ${B_{q,1}}$","authors":"K. V. Pozharska, A. S. Romanyuk","doi":"10.1002/mana.70027","DOIUrl":null,"url":null,"abstract":"<p>Exact-order estimates are obtained for some approximation characteristics of the classes of periodic multivariate functions with mixed smoothness (the Nikol'skii–Besov classes <span></span><math>\n <semantics>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n </mrow>\n <mi>r</mi>\n </msubsup>\n <annotation>$B^{\\bm{r}}_{p, \\theta }$</annotation>\n </semantics></math>) in the space <span></span><math>\n <semantics>\n <msub>\n <mi>B</mi>\n <mrow>\n <mi>q</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$B_{q,1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1 \\le p, q \\le \\infty$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>θ</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\le \\theta \\le \\infty$</annotation>\n </semantics></math>, whose norm is stronger than the <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>q</mi>\n </msub>\n <annotation>$L_q$</annotation>\n </semantics></math>-norm. It is shown that in the multivariate case (in contrast to the univariate) in most of the considered situations the obtained estimates differ in order from the corresponding estimates in the space <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>q</mi>\n </msub>\n <annotation>$L_q$</annotation>\n </semantics></math>. Besides, a significant progress is made in estimates for the considered approximation characteristics of the classes <span></span><math>\n <semantics>\n <msubsup>\n <mi>B</mi>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n </mrow>\n <mi>r</mi>\n </msubsup>\n <annotation>$B^{\\bm{r}}_{p, \\theta }$</annotation>\n </semantics></math> in the space <span></span><math>\n <semantics>\n <msub>\n <mi>B</mi>\n <mrow>\n <mi>q</mi>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$B_{q, 1}$</annotation>\n </semantics></math> comparing to the known estimates in the space <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>q</mi>\n </msub>\n <annotation>$L_q$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3114-3134"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Exact-order estimates are obtained for some approximation characteristics of the classes of periodic multivariate functions with mixed smoothness (the Nikol'skii–Besov classes ) in the space , , , whose norm is stronger than the -norm. It is shown that in the multivariate case (in contrast to the univariate) in most of the considered situations the obtained estimates differ in order from the corresponding estimates in the space . Besides, a significant progress is made in estimates for the considered approximation characteristics of the classes in the space comparing to the known estimates in the space .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index