Embeddings between sequence variable Lebesgue spaces, strict and finitely strict singularity

IF 0.8 3区 数学 Q2 MATHEMATICS
Jan Lang, Aleš Nekvinda
{"title":"Embeddings between sequence variable Lebesgue spaces, strict and finitely strict singularity","authors":"Jan Lang,&nbsp;Aleš Nekvinda","doi":"10.1002/mana.12031","DOIUrl":null,"url":null,"abstract":"<p>For two variable Lebesgue spaces <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <msub>\n <mi>p</mi>\n <mi>n</mi>\n </msub>\n </msub>\n <annotation>$\\ell _{p_n}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n </msub>\n <annotation>$\\ell _{q_n}$</annotation>\n </semantics></math>, with <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>&lt;</mo>\n <msub>\n <mi>p</mi>\n <mi>n</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$0&lt;p_n, q_n &lt;\\infty$</annotation>\n </semantics></math>, we provide necessary and sufficient conditions under which the natural embeddings <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n <mi>d</mi>\n <mo>:</mo>\n <msub>\n <mi>ℓ</mi>\n <msub>\n <mi>p</mi>\n <mi>n</mi>\n </msub>\n </msub>\n <mo>→</mo>\n <msub>\n <mi>ℓ</mi>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n </msub>\n </mrow>\n <annotation>$id:\\ell _{p_n} \\rightarrow \\ell _{q_n}$</annotation>\n </semantics></math> are strictly or finitely strictly singular. We also provide estimates for the Bernstein numbers of the natural embedding <span></span><math>\n <semantics>\n <mrow>\n <mi>i</mi>\n <mi>d</mi>\n </mrow>\n <annotation>$id$</annotation>\n </semantics></math> and show how they depend on the exponents <span></span><math>\n <semantics>\n <msub>\n <mi>p</mi>\n <mi>n</mi>\n </msub>\n <annotation>$p_n$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>q</mi>\n <mi>n</mi>\n </msub>\n <annotation>$q_n$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"2926-2941"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12031","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For two variable Lebesgue spaces p n $\ell _{p_n}$ and q n $\ell _{q_n}$ , with 0 < p n , q n < $0<p_n, q_n <\infty$ , we provide necessary and sufficient conditions under which the natural embeddings i d : p n q n $id:\ell _{p_n} \rightarrow \ell _{q_n}$ are strictly or finitely strictly singular. We also provide estimates for the Bernstein numbers of the natural embedding i d $id$ and show how they depend on the exponents p n $p_n$ and q n $q_n$ .

序列变量勒贝格空间之间的嵌入,严格和有限严格奇点
对于两个变量勒贝格空间,p n $\ell _{p_n}$和q n $\ell _{q_n}$,0 &lt; p n, q n &lt;∞$0<p_n, q_n <\infty$,我们提供了自然嵌入的充分必要条件:p n→q n $id:\ell _{p_n} \rightarrow \ell _{q_n}$是严格或有限严格奇异。我们还提供了自然嵌入id $id$的Bernstein数的估计,并展示了它们如何依赖于指数p n $p_n$和q n$q_n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信