Accelerated First-Passage Dynamics in a Non-Markovian Feedback Ornstein–Uhlenbeck Process

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Francesco Coghi, Romain Duvezin, John S. Wettlaufer
{"title":"Accelerated First-Passage Dynamics in a Non-Markovian Feedback Ornstein–Uhlenbeck Process","authors":"Francesco Coghi,&nbsp;Romain Duvezin,&nbsp;John S. Wettlaufer","doi":"10.1007/s10955-025-03509-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study the first-passage dynamics of a non-Markovian stochastic process with time-averaged feedback, which we model as a one-dimensional Ornstein–Uhlenbeck process wherein the particle drift is modified by the empirical mean of its trajectory. This process maps onto a class of self-interacting diffusions. Using weak-noise large deviation theory, we calculate the leading order asymptotics of the time-dependent distribution of the particle position, derive the most probable paths that reach the specified position at a given time and quantify their likelihood via the action functional. We compute the feedback-modified Kramers rate and its inverse, which approximates the mean first-passage time, and show that the feedback accelerates dynamics by storing finite-time fluctuations, thereby lowering the effective energy barrier and shifting the optimal first-passage time from infinite to finite. Although we identify alternative mechanisms, such as slingshot and ballistic trajectories, we find that they remain sub-optimal and hence do not accelerate the dynamics. These results show how memory feedback reshapes rare event statistics, thereby offering a mechanism to potentially control first-passage dynamics.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 9","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03509-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03509-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the first-passage dynamics of a non-Markovian stochastic process with time-averaged feedback, which we model as a one-dimensional Ornstein–Uhlenbeck process wherein the particle drift is modified by the empirical mean of its trajectory. This process maps onto a class of self-interacting diffusions. Using weak-noise large deviation theory, we calculate the leading order asymptotics of the time-dependent distribution of the particle position, derive the most probable paths that reach the specified position at a given time and quantify their likelihood via the action functional. We compute the feedback-modified Kramers rate and its inverse, which approximates the mean first-passage time, and show that the feedback accelerates dynamics by storing finite-time fluctuations, thereby lowering the effective energy barrier and shifting the optimal first-passage time from infinite to finite. Although we identify alternative mechanisms, such as slingshot and ballistic trajectories, we find that they remain sub-optimal and hence do not accelerate the dynamics. These results show how memory feedback reshapes rare event statistics, thereby offering a mechanism to potentially control first-passage dynamics.

非马尔可夫反馈Ornstein-Uhlenbeck过程的加速首通道动力学
本文研究了具有时间平均反馈的非马尔可夫随机过程的首程动力学,并将其建模为一维Ornstein-Uhlenbeck过程,其中粒子漂移由其轨迹的经验平均值修正。这个过程映射到一类自相互作用的扩散。利用弱噪声大偏差理论,计算了粒子位置随时间分布的阶渐近性,导出了在给定时间到达指定位置的最可能路径,并通过作用泛函量化了它们的可能性。我们计算了反馈修正的Kramers速率及其逆,它近似于平均首次通过时间,并表明反馈通过存储有限时间波动来加速动力学,从而降低有效能垒并将最佳首次通过时间从无限变为有限。虽然我们确定了其他机制,如弹弓和弹道轨迹,但我们发现它们仍然是次优的,因此不会加速动力学。这些结果显示了记忆反馈如何重塑罕见事件统计,从而提供了一种潜在的机制来控制第一通道动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信