Phase Transitions in Heisenberg Magnets Induced by Uniaxial Anisotropy: Wang–Landau and Machine Learning Simulations

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
D. A. Druz’ev, A. A. Chubarova, P. V. Prudnikov
{"title":"Phase Transitions in Heisenberg Magnets Induced by Uniaxial Anisotropy: Wang–Landau and Machine Learning Simulations","authors":"D. A. Druz’ev,&nbsp;A. A. Chubarova,&nbsp;P. V. Prudnikov","doi":"10.1134/S0021364025607080","DOIUrl":null,"url":null,"abstract":"<p>The critical properties of a three-dimensional anisotropic Heisenberg model in an external field has been simulated for the first time using an approach combining the Wang–Landau algorithm with machine learning methods, DBSCAN clustering, and principal component analysis. The threshold value of the parameter Δ<sub>c</sub> separating the regions of the decisive effect of uniaxial anisotropy has been determined.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"122 3","pages":"165 - 170"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364025607080","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The critical properties of a three-dimensional anisotropic Heisenberg model in an external field has been simulated for the first time using an approach combining the Wang–Landau algorithm with machine learning methods, DBSCAN clustering, and principal component analysis. The threshold value of the parameter Δc separating the regions of the decisive effect of uniaxial anisotropy has been determined.

Abstract Image

Abstract Image

由单轴各向异性诱导的海森堡磁体相变:Wang-Landau和机器学习模拟
利用Wang-Landau算法与机器学习方法、DBSCAN聚类和主成分分析相结合的方法,首次模拟了三维各向异性海森堡模型在外场中的关键特性。确定了分离单轴各向异性决定性影响区域的参数Δc的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JETP Letters
JETP Letters 物理-物理:综合
CiteScore
2.40
自引率
30.80%
发文量
164
审稿时长
3-6 weeks
期刊介绍: All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信