{"title":"Fractional and simultaneous precipitation: recovering critical metals from multicomponent solutions","authors":"Andressa Mazur, Frederico Marques Penha","doi":"10.1007/s11705-025-2610-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores fractional and simultaneous precipitation methods to recover metals from a synthetic solution containing the major components from lithium-ion battery recycling leachates: Co, Ni, Mn, Li, and H<sub>2</sub>SO<sub>4</sub>. Thermodynamic simulations analyzed the behavior of the metal-bearing solutions during hydroxide precipitation to guide process design. The fractional precipitation process was divided into three steps: pH-adjustment (D1), Co and Ni recovery (D2), and Mn recovery (D3). D2 achieved 89.7% Ni and 76.8% Co recovery; alongside Mn and Li were also removed (15% and 25% respectively). D3 showed mainly Mn recovery (68%) along with 18.7% Co and 7.3% Ni. Simultaneous precipitation resulted in over 99.7% recovery of Co, Ni, and Mn, with a small amount of Li (15%) being recovered from the solution. Na removal from the solution was observed across all experiments. X-ray diffraction analysis revealed that the phases formed were distinct from the predictions. Regardless of the presence of NH<sub>4</sub>OH as a chelating agent in solution, a mixed nickel-cobalt-manganese oxide could be obtained after calcination. This approach offers a potentially less laborious method for recovering metals in products relevant to cathode precursors in a single step from recycling leachate.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-025-2610-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2610-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores fractional and simultaneous precipitation methods to recover metals from a synthetic solution containing the major components from lithium-ion battery recycling leachates: Co, Ni, Mn, Li, and H2SO4. Thermodynamic simulations analyzed the behavior of the metal-bearing solutions during hydroxide precipitation to guide process design. The fractional precipitation process was divided into three steps: pH-adjustment (D1), Co and Ni recovery (D2), and Mn recovery (D3). D2 achieved 89.7% Ni and 76.8% Co recovery; alongside Mn and Li were also removed (15% and 25% respectively). D3 showed mainly Mn recovery (68%) along with 18.7% Co and 7.3% Ni. Simultaneous precipitation resulted in over 99.7% recovery of Co, Ni, and Mn, with a small amount of Li (15%) being recovered from the solution. Na removal from the solution was observed across all experiments. X-ray diffraction analysis revealed that the phases formed were distinct from the predictions. Regardless of the presence of NH4OH as a chelating agent in solution, a mixed nickel-cobalt-manganese oxide could be obtained after calcination. This approach offers a potentially less laborious method for recovering metals in products relevant to cathode precursors in a single step from recycling leachate.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.