Ahmad Parsa, Pejman Rezaei, Ali AmneElahi, Amin Khatami, Zahra Mousavirazi
{"title":"Efficient transition from SMA to ESIW for planar slot array antennas in wireless systems","authors":"Ahmad Parsa, Pejman Rezaei, Ali AmneElahi, Amin Khatami, Zahra Mousavirazi","doi":"10.1007/s10470-025-02498-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this manuscript, a planar slot array antenna is designed to operate at 10 GHz using empty substrate integrated waveguide (ESIW) technology. ESIW is an advanced form of substrate integrated waveguide (SIW) in which the dielectric material between the metal layers is removed and replaced with air to significantly reduce dielectric losses and improve radiation efficiency. The proposed structure is implemented on a standard PCB and consists of three main parts: (1) a coaxial (SMA) to SIW transition, (2) a tapered SIW-to-ESIW transition section, and (3) an eight-element ESIW-based slot array radiator. By eliminating most of the dielectric material, the ESIW-based design achieves enhanced radiation efficiency and lower insertion loss compared to conventional SIW slot arrays. The overall physical dimensions are 22 × 221 × 4.4 mm³, and the antenna achieves a fractional bandwidth of 3.85%, with a radiation efficiency of approximately 94% and a realized gain of 15.6 dB at the center frequency. The performance of the antenna was evaluated using full-wave simulations in CST, and the results show excellent agreement with experimental measurements.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"125 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02498-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript, a planar slot array antenna is designed to operate at 10 GHz using empty substrate integrated waveguide (ESIW) technology. ESIW is an advanced form of substrate integrated waveguide (SIW) in which the dielectric material between the metal layers is removed and replaced with air to significantly reduce dielectric losses and improve radiation efficiency. The proposed structure is implemented on a standard PCB and consists of three main parts: (1) a coaxial (SMA) to SIW transition, (2) a tapered SIW-to-ESIW transition section, and (3) an eight-element ESIW-based slot array radiator. By eliminating most of the dielectric material, the ESIW-based design achieves enhanced radiation efficiency and lower insertion loss compared to conventional SIW slot arrays. The overall physical dimensions are 22 × 221 × 4.4 mm³, and the antenna achieves a fractional bandwidth of 3.85%, with a radiation efficiency of approximately 94% and a realized gain of 15.6 dB at the center frequency. The performance of the antenna was evaluated using full-wave simulations in CST, and the results show excellent agreement with experimental measurements.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.