{"title":"Experimental Characterization of Magnetic Field Waveform Effects on Heat Transfer and Entropy Generation of \\({Fe}_{3}{O}_{4}\\)-MgO","authors":"Victor O. Adogbeji, Tartibu Lagouge","doi":"10.1007/s10765-025-03634-1","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic hybrid nanofluids (MHNFs), also known as ferrofluids, exhibit increased efficiency under an appropriate magnetic field. This work explores the effectiveness of heat transfer in MHNFs across various nanoparticle concentrations and magnetic field waveforms in both turbulent and transitional flow regimes. Five nanoparticle volume fractions (0.00625 % to 0.1 %) were tested under square, sine, and triangular magnetic fields across a Reynolds number (Re) spectrum of 1000 to 8000. Compared to DIW in the transitional regime, MHNFs showed up to 5.2 % improvement in the convective heat transfer coefficient at a 0.0125 % volume fraction, with average Nusselt number (Nu) increases of up to 5.1 %. The square wave magnetic field was particularly effective, enhancing performance by 8.8 % at 0.0125 % and 7.9 % at 0.00625 % in the turbulent phase. In the transition phase, Nu enhancements reached up to 31.38 % at 0.0125 % volume fraction without a magnetic field, with the square wave field achieving 36.1 % improvement, a 15.0 % increase compared to the no field case. Triangular waves induced the earliest transition onset at Re 2495.12 for 0.1 % volume fraction. The highest thermal performance factor (TPF) was 1.9789 for the turbulent regime and 4.2297 for the transitional regime. Triangular wave fields were most effective at reducing entropy generation, especially at high velocities.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-025-03634-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03634-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic hybrid nanofluids (MHNFs), also known as ferrofluids, exhibit increased efficiency under an appropriate magnetic field. This work explores the effectiveness of heat transfer in MHNFs across various nanoparticle concentrations and magnetic field waveforms in both turbulent and transitional flow regimes. Five nanoparticle volume fractions (0.00625 % to 0.1 %) were tested under square, sine, and triangular magnetic fields across a Reynolds number (Re) spectrum of 1000 to 8000. Compared to DIW in the transitional regime, MHNFs showed up to 5.2 % improvement in the convective heat transfer coefficient at a 0.0125 % volume fraction, with average Nusselt number (Nu) increases of up to 5.1 %. The square wave magnetic field was particularly effective, enhancing performance by 8.8 % at 0.0125 % and 7.9 % at 0.00625 % in the turbulent phase. In the transition phase, Nu enhancements reached up to 31.38 % at 0.0125 % volume fraction without a magnetic field, with the square wave field achieving 36.1 % improvement, a 15.0 % increase compared to the no field case. Triangular waves induced the earliest transition onset at Re 2495.12 for 0.1 % volume fraction. The highest thermal performance factor (TPF) was 1.9789 for the turbulent regime and 4.2297 for the transitional regime. Triangular wave fields were most effective at reducing entropy generation, especially at high velocities.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.