{"title":"Preparation and characterization of Cu3(PO4)2 as catalyst for Fenton-like reactions","authors":"D. Meziani, Y. Roumila, I. Belkhettab, M. Trari","doi":"10.1007/s11243-025-00658-2","DOIUrl":null,"url":null,"abstract":"<div><p>The removal of organic pollutants, particularly textile dyes, using green and efficient methods is a key focus for researchers addressing environmental pollution. Advanced oxidation processes (AOPs), especially the Fenton-like process, have garnered significant attention for their ability to break down recalcitrant organic molecules into harmless byproducts, namely water and carbon dioxide, through the generation of hydroxyl radicals (<sup>·</sup>OH). In this study, a heterogeneous Fenton-like catalyst, copper phosphate Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, was synthesized in the presence of oxalate to achieve a unique morphology. The material was characterized by various physicochemical techniques, including TG, XRD, SEM, UV–Vis, XPS, photoluminescence (PL), and electrochemical impedance spectroscopy (EIS), to evaluate its potential for degrading Basic Yellow 28 (BY-28), a common organic dye of the textile industry. The degradation process was conducted at neutral pH with a BY-28 dye concentration of 20 mg L<sup>−1</sup> and a catalyst dose of 1 g L<sup>−1</sup>. The catalytic activity is attributed to the high concentration of Cu<sup>2+</sup> on the catalyst surface, which efficiently generates <sup>•</sup>OH radicals by activating hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>).</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"50 5","pages":"793 - 802"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-025-00658-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The removal of organic pollutants, particularly textile dyes, using green and efficient methods is a key focus for researchers addressing environmental pollution. Advanced oxidation processes (AOPs), especially the Fenton-like process, have garnered significant attention for their ability to break down recalcitrant organic molecules into harmless byproducts, namely water and carbon dioxide, through the generation of hydroxyl radicals (·OH). In this study, a heterogeneous Fenton-like catalyst, copper phosphate Cu3(PO4)2, was synthesized in the presence of oxalate to achieve a unique morphology. The material was characterized by various physicochemical techniques, including TG, XRD, SEM, UV–Vis, XPS, photoluminescence (PL), and electrochemical impedance spectroscopy (EIS), to evaluate its potential for degrading Basic Yellow 28 (BY-28), a common organic dye of the textile industry. The degradation process was conducted at neutral pH with a BY-28 dye concentration of 20 mg L−1 and a catalyst dose of 1 g L−1. The catalytic activity is attributed to the high concentration of Cu2+ on the catalyst surface, which efficiently generates •OH radicals by activating hydrogen peroxide (H2O2).
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.