{"title":"Exploration of Synthesis Conditions for High-Magnetization Ba-Ca-Based W-Type Hexaferrites","authors":"Matsui Yosuke;Watanabe Kowashi;Kakizaki Koichi;Kamishima Kenji","doi":"10.1109/LMAG.2025.3599741","DOIUrl":null,"url":null,"abstract":"This study presents the synthesis of W-type hexagonal ferrite (BaZn<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>Fe<inline-formula><tex-math>$_{16}$</tex-math></inline-formula>O<inline-formula><tex-math>$_{27}$</tex-math></inline-formula>) using a powder metallurgy approach to enhance magnetic properties through controlled Ca doping. By identifying the crystalline phase and repeating to adjust the composition, we achieved a primary-phase W-type hexaferrite substituted with about Ba: Ca = 0.5: 0.5 in the chemical formula. Electron probe microanalysis results helped us reach the sample with Ba: Ca: Zn: Fe = 0.52: 0.48: 0.78: 10.73, demonstrating the highest magnetization of 131.0 A<inline-formula><tex-math>$\\cdot$</tex-math></inline-formula> m<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>/kg at 1.8 K. Our findings suggest the magnetically optimal nature of this composition for Ca-substituted Ba-based W-type ferrite. This investigation contributes to understanding Ba-Ca-based W-type hexaferrite and provides a foundation for future exploration and optimization of its magnetic properties.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/11126962/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the synthesis of W-type hexagonal ferrite (BaZn$_{2}$Fe$_{16}$O$_{27}$) using a powder metallurgy approach to enhance magnetic properties through controlled Ca doping. By identifying the crystalline phase and repeating to adjust the composition, we achieved a primary-phase W-type hexaferrite substituted with about Ba: Ca = 0.5: 0.5 in the chemical formula. Electron probe microanalysis results helped us reach the sample with Ba: Ca: Zn: Fe = 0.52: 0.48: 0.78: 10.73, demonstrating the highest magnetization of 131.0 A$\cdot$ m$^{2}$/kg at 1.8 K. Our findings suggest the magnetically optimal nature of this composition for Ca-substituted Ba-based W-type ferrite. This investigation contributes to understanding Ba-Ca-based W-type hexaferrite and provides a foundation for future exploration and optimization of its magnetic properties.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.