{"title":"EWHT-AIB: Enhanced Waist-Mounted Human Tracking Framework Based on Array IMU and Barometer","authors":"Feifan Lin;Qingzhong Cai;Yue Yu;Huizheng Yuan","doi":"10.1109/TIM.2025.3604120","DOIUrl":null,"url":null,"abstract":"With the development of the Internet of Things (IoT) and artificial intelligence (AI), indoor location-based services have become an indispensable part of public daily life. The performance of 3-D indoor positioning is constrained by the low performance of consumer-grade micro-electromechanical systems (MEMS) inertial measurement unit (IMU), the lack of effective calibration for the barometer, and the poor adaptability to complex human motion modes. To address the above challenges, this article proposes an enhanced waist-mounted human tracking framework based on array IMU and barometer (EWHT-AIB) that combines array IMU data fusion, precise barometer calibration, and a motion-constrained position-attitude update algorithm to achieve robust and accurate indoor positioning. To enhance array IMU data fusion performance, a weighted data fusion algorithm for array IMU based on the bias instability coefficients is proposed to achieve effective weighted fusion of array IMU data. Subsequently, a barometer calibration algorithm based on nonlinear fitting is proposed to achieve accurate compensation for bias error and scale factor error of the barometer. Finally, a position-attitude update algorithm under motion constraints is designed to achieve accurate pedestrian 3-D indoor positioning using compensated array IMU and barometer data. Comprehensive experiments demonstrate that the proposed EWHT-AIB framework can achieve meter level positioning accuracy under typical indoor environments.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-12"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11151766/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of the Internet of Things (IoT) and artificial intelligence (AI), indoor location-based services have become an indispensable part of public daily life. The performance of 3-D indoor positioning is constrained by the low performance of consumer-grade micro-electromechanical systems (MEMS) inertial measurement unit (IMU), the lack of effective calibration for the barometer, and the poor adaptability to complex human motion modes. To address the above challenges, this article proposes an enhanced waist-mounted human tracking framework based on array IMU and barometer (EWHT-AIB) that combines array IMU data fusion, precise barometer calibration, and a motion-constrained position-attitude update algorithm to achieve robust and accurate indoor positioning. To enhance array IMU data fusion performance, a weighted data fusion algorithm for array IMU based on the bias instability coefficients is proposed to achieve effective weighted fusion of array IMU data. Subsequently, a barometer calibration algorithm based on nonlinear fitting is proposed to achieve accurate compensation for bias error and scale factor error of the barometer. Finally, a position-attitude update algorithm under motion constraints is designed to achieve accurate pedestrian 3-D indoor positioning using compensated array IMU and barometer data. Comprehensive experiments demonstrate that the proposed EWHT-AIB framework can achieve meter level positioning accuracy under typical indoor environments.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.