A Meshless Time-Domain Method for Geometric Uncertainty Quantification

IF 1.5 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kiran Ravindran;Abhijith B. Narendranath;Kalarickaparambil Joseph Vinoy
{"title":"A Meshless Time-Domain Method for Geometric Uncertainty Quantification","authors":"Kiran Ravindran;Abhijith B. Narendranath;Kalarickaparambil Joseph Vinoy","doi":"10.1109/JMMCT.2025.3603902","DOIUrl":null,"url":null,"abstract":"Numerical electromagnetic computations must often accommodate random geometric representations while handling biological tissues, and engineered components with manufacturing tolerances. Meshless time-domain radial point interpolation method (RPIM) offers advantages to quantitatively analyze such geometric uncertainties using polynomial chaos expansion (PCE). Formulations for geometric uncertainties may require variations in mesh or node distribution for each analyzed sample, leading to high computational requirement for re-meshing. The proposed geometric stochastic RPIM (G-SRPIM) overcomes this with a single domain model by expressing the shape function matrix of RPIM in a stochastic framework. The uncertainty is quantified in G-SRPIM through a novel way by which its random support domain moment matrices are organized in a block structure, and inverted using Schur's complement and Neumann approximation, exploiting the underlying symmetry. The proposed method is validated by analyzing a parallel plate waveguide with a slit exhibiting random variations, a realistic 3D bio-electromagnetic problem involving a section of human head, and an iris filter with random variations in its iris dimensions. Standard deviation upto <inline-formula><tex-math>$45 \\%$</tex-math></inline-formula> of the average inter-node distance is tested without jeopardizing the stability. The accuracy of our approach is compared with Monte-Carlo (MC) simulations on a deterministic RPIM using the Kolmogorov-Smirnov (KS) test. Additionally, results are compared with MC simulation on CST Studio Suite 2018 and stochastic collocation (SC). The proposed method exhibits superior execution time compared to SC and MC-based non-intrusive implementations, underscoring its efficiency and reliability in handling geometric uncertainties in microwave components.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"396-406"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11143170/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical electromagnetic computations must often accommodate random geometric representations while handling biological tissues, and engineered components with manufacturing tolerances. Meshless time-domain radial point interpolation method (RPIM) offers advantages to quantitatively analyze such geometric uncertainties using polynomial chaos expansion (PCE). Formulations for geometric uncertainties may require variations in mesh or node distribution for each analyzed sample, leading to high computational requirement for re-meshing. The proposed geometric stochastic RPIM (G-SRPIM) overcomes this with a single domain model by expressing the shape function matrix of RPIM in a stochastic framework. The uncertainty is quantified in G-SRPIM through a novel way by which its random support domain moment matrices are organized in a block structure, and inverted using Schur's complement and Neumann approximation, exploiting the underlying symmetry. The proposed method is validated by analyzing a parallel plate waveguide with a slit exhibiting random variations, a realistic 3D bio-electromagnetic problem involving a section of human head, and an iris filter with random variations in its iris dimensions. Standard deviation upto $45 \%$ of the average inter-node distance is tested without jeopardizing the stability. The accuracy of our approach is compared with Monte-Carlo (MC) simulations on a deterministic RPIM using the Kolmogorov-Smirnov (KS) test. Additionally, results are compared with MC simulation on CST Studio Suite 2018 and stochastic collocation (SC). The proposed method exhibits superior execution time compared to SC and MC-based non-intrusive implementations, underscoring its efficiency and reliability in handling geometric uncertainties in microwave components.
几何不确定性量化的无网格时域方法
在处理生物组织和具有制造公差的工程部件时,数值电磁计算必须经常适应随机几何表示。无网格时域径向点插值法(RPIM)具有利用多项式混沌展开(PCE)定量分析几何不确定性的优势。几何不确定性的公式可能需要每个分析样本的网格或节点分布的变化,导致重新网格划分的高计算需求。提出的几何随机RPIM (G-SRPIM)通过在随机框架中表示RPIM的形状函数矩阵,克服了这一问题。在G-SRPIM中,不确定性是通过一种新颖的方法来量化的,通过这种方法,它的随机支持域矩矩阵被组织成一个块结构,并使用舒尔补和诺依曼近似来反演,利用潜在的对称性。通过分析具有随机变化的狭缝平行板波导、涉及人体头部部分的现实三维生物电磁问题以及虹膜尺寸随机变化的虹膜滤波器,验证了所提方法的有效性。在不影响稳定性的情况下,测试平均节点间距离的标准偏差可达45%。我们的方法的准确性与蒙特卡罗(MC)模拟的确定性RPIM使用Kolmogorov-Smirnov (KS)测试进行了比较。此外,还将结果与CST Studio Suite 2018上的MC模拟和随机配置(SC)进行了比较。与基于SC和mc的非侵入式实现相比,该方法具有更好的执行时间,强调了其在处理微波元件几何不确定性方面的效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信