{"title":"A Blockchain Framework for Equitable and Secure Task Allocation in Robot Swarms","authors":"Hanqing Zhao;Alexandre Pacheco;Giovanni Beltrame;Xue Liu;Marco Dorigo;Gregory Dudek","doi":"10.1109/LRA.2025.3606349","DOIUrl":null,"url":null,"abstract":"Recent studies demonstrate the potential of blockchain to enable robots in a swarm to achieve secure consensus about the environment, particularly when robots are homogeneous and perform identical tasks. Typically, robots receive rewards for their contributions to consensus achievement, but no studies have yet targeted heterogeneous swarms, in which the robots have distinct physical capabilities suited to different tasks. We present a novel framework that leverages domain knowledge to decompose the swarm mission into a hierarchy of tasks within smart contracts. This allows the robots to reach a consensus about both the environment and the action plan, allocating tasks among robots with diverse capabilities to improve their performance while maintaining security against faults and malicious behaviors. We refer to this concept as <italic>equitable and secure</i> task allocation. Validated in Simultaneous Localization and Mapping missions, our approach not only achieves equitable task allocation among robots with varying capabilities, improving mapping accuracy and efficiency, but also shows resilience against malicious attacks.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 10","pages":"10862-10869"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11150749/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies demonstrate the potential of blockchain to enable robots in a swarm to achieve secure consensus about the environment, particularly when robots are homogeneous and perform identical tasks. Typically, robots receive rewards for their contributions to consensus achievement, but no studies have yet targeted heterogeneous swarms, in which the robots have distinct physical capabilities suited to different tasks. We present a novel framework that leverages domain knowledge to decompose the swarm mission into a hierarchy of tasks within smart contracts. This allows the robots to reach a consensus about both the environment and the action plan, allocating tasks among robots with diverse capabilities to improve their performance while maintaining security against faults and malicious behaviors. We refer to this concept as equitable and secure task allocation. Validated in Simultaneous Localization and Mapping missions, our approach not only achieves equitable task allocation among robots with varying capabilities, improving mapping accuracy and efficiency, but also shows resilience against malicious attacks.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.