{"title":"Highly Sensitive Dual-Channel Michelson Interferometer for Seawater Temperature and Salinity Sensing","authors":"Yuxi Ma;Bing Han;Qian Cheng;Yiming Tao;Yihan Qiu;Luyao Wang;Ting Feng;Yong Zhao","doi":"10.1109/TIM.2025.3604931","DOIUrl":null,"url":null,"abstract":"A highly compact and superior sensitivity dual-channel Michelson interferometer for seawater temperature and salinity sensing is demonstrated, which is successively constructed by splicing single-mode fiber (SMF)–multimode fiber (MMF)–twin-core fiber (TCF) in sequence. Employing femtosecond laser microprocessing technology, two D-type microcavities are precisely fabricated on the dual fiber cores of the TCF for the purpose of temperature and salinity sensing. Furthermore, an enhanced high-reflectivity mirror is employed to improve the spectral contrast. The results obtained from the experiment illustrate that the proposed sensor demonstrates a remarkably stable temperature performance of −3.26 nm/°C in <inline-formula> <tex-math>$10~^{\\circ }$ </tex-math></inline-formula>C–<inline-formula> <tex-math>$25~^{\\circ }$ </tex-math></inline-formula>C. Besides, in the salinity interval of 5‰–40‰, a superior salinity sensitivity of −2.95 nm/‰ (equivalent to <inline-formula> <tex-math>$-15~265$ </tex-math></inline-formula> nm/RIU) is proved. Moreover, the proposed sensor exhibits remarkable stability and high repeatability, thus proffering an innovative perspective for the surveillance of the marine environment.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-8"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11154943/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A highly compact and superior sensitivity dual-channel Michelson interferometer for seawater temperature and salinity sensing is demonstrated, which is successively constructed by splicing single-mode fiber (SMF)–multimode fiber (MMF)–twin-core fiber (TCF) in sequence. Employing femtosecond laser microprocessing technology, two D-type microcavities are precisely fabricated on the dual fiber cores of the TCF for the purpose of temperature and salinity sensing. Furthermore, an enhanced high-reflectivity mirror is employed to improve the spectral contrast. The results obtained from the experiment illustrate that the proposed sensor demonstrates a remarkably stable temperature performance of −3.26 nm/°C in $10~^{\circ }$ C–$25~^{\circ }$ C. Besides, in the salinity interval of 5‰–40‰, a superior salinity sensitivity of −2.95 nm/‰ (equivalent to $-15~265$ nm/RIU) is proved. Moreover, the proposed sensor exhibits remarkable stability and high repeatability, thus proffering an innovative perspective for the surveillance of the marine environment.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.