Fan Qin;Jinyang Bi;Jiao Ma;Chao Gu;Hailin Zhang;Wenchi Cheng;Steven Gao
{"title":"A High-Efficiency Reconfigurable Bidirectional Array Antenna Based on Transmit–Reflect Switchable Metasurface","authors":"Fan Qin;Jinyang Bi;Jiao Ma;Chao Gu;Hailin Zhang;Wenchi Cheng;Steven Gao","doi":"10.1109/TAP.2025.3575265","DOIUrl":null,"url":null,"abstract":"This communication proposes a reconfigurable bidirectional array antenna with high efficiency by employing a novel transmit-reflect switchable metasurface (TRSM) with 360° continuous phase coverage. To realize electromagnetic (EM) wave manipulation, a transmit-reflect switch layer (TRSL) incorporating p-i-n diodes is introduced as the middle layer of TRSM, sandwiched by two transmission metasurfaces (TMs). By <sc>on</small>/<sc>off</small> the switches, the TRSL functions as a mesh-type ground or a polarization-filtering layer, exhibiting a reconfigurable reflective or transmissive property to the incident wave. Furthermore, the TRSM achieves 360° phase compensation and directive beam formation through combined operation of upper and lower TMs. This structure enables bidirectional radiation at a single frequency and polarization. To minimize structural complexity, an enhanced TRSM design was developed and optimized to achieve a 50% reduction in the number of p-i-n diodes. Since the independent control of bidirectional radiation by TRSL does not interfere with the phase-tuning function of two TMs, the TRSM achieves 360° phase compensation and minimizes quantization errors. Moreover, the use of p-i-n diodes, which are not directly integrated with the radiating elements, reduces insertion loss. Hence, the TRSM maintains a high aperture efficiency. A prototype was fabricated and measured to demonstrate a successful realization of the upward and downward directive beams with peak gains of 22.3 and 22.1 dBi and aperture efficiencies of 47.2% and 43.8% The proposed antenna design presents notable advantages, such as high gain, high aperture efficiency, cost-effectiveness, a simplified configuration, and electronic beam control functionality.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 9","pages":"7051-7056"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11026776/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This communication proposes a reconfigurable bidirectional array antenna with high efficiency by employing a novel transmit-reflect switchable metasurface (TRSM) with 360° continuous phase coverage. To realize electromagnetic (EM) wave manipulation, a transmit-reflect switch layer (TRSL) incorporating p-i-n diodes is introduced as the middle layer of TRSM, sandwiched by two transmission metasurfaces (TMs). By on/off the switches, the TRSL functions as a mesh-type ground or a polarization-filtering layer, exhibiting a reconfigurable reflective or transmissive property to the incident wave. Furthermore, the TRSM achieves 360° phase compensation and directive beam formation through combined operation of upper and lower TMs. This structure enables bidirectional radiation at a single frequency and polarization. To minimize structural complexity, an enhanced TRSM design was developed and optimized to achieve a 50% reduction in the number of p-i-n diodes. Since the independent control of bidirectional radiation by TRSL does not interfere with the phase-tuning function of two TMs, the TRSM achieves 360° phase compensation and minimizes quantization errors. Moreover, the use of p-i-n diodes, which are not directly integrated with the radiating elements, reduces insertion loss. Hence, the TRSM maintains a high aperture efficiency. A prototype was fabricated and measured to demonstrate a successful realization of the upward and downward directive beams with peak gains of 22.3 and 22.1 dBi and aperture efficiencies of 47.2% and 43.8% The proposed antenna design presents notable advantages, such as high gain, high aperture efficiency, cost-effectiveness, a simplified configuration, and electronic beam control functionality.
期刊介绍:
IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques