Antibonding–Vacancy Coupling Boosts Hydrogen Evolution Rate in Diborides

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Eunsoo Lee, Johan A. Yapo, Ashwin Bhupathy, Tamar S. Mentzel, Xiangxi Yin, Shola E. Adeniji, Sang Bum Kim and Boniface P. T. Fokwa*, 
{"title":"Antibonding–Vacancy Coupling Boosts Hydrogen Evolution Rate in Diborides","authors":"Eunsoo Lee,&nbsp;Johan A. Yapo,&nbsp;Ashwin Bhupathy,&nbsp;Tamar S. Mentzel,&nbsp;Xiangxi Yin,&nbsp;Shola E. Adeniji,&nbsp;Sang Bum Kim and Boniface P. T. Fokwa*,&nbsp;","doi":"10.1021/acsenergylett.5c02211","DOIUrl":null,"url":null,"abstract":"<p >A non-noble-metal electrocatalyst, V<sub>1–<i>x</i></sub>Mo<sub><i>x</i>–δ</sub>B<sub>2</sub> (<i>x</i> = 0–1; δ &lt; 0.2), is introduced to replace costly hydrogen evolution reaction (HER) catalysts, enabling a greener energy economy. This solid solution catalyst includes vacancy-free and Mo-vacancy-containing variants (δ<sub>max</sub> = 0.16 for <i>x</i> = 0.7). Combining dual active sites and vacancies, it achieves a low overpotential (η<sub>1000</sub> = 0.391 V), outperforming Pt/C (η<sub>1000</sub> = 0.837 V) at industry-relevant current densities. DFT calculations reveal that strong antibonding metal–boron interactions at the Fermi level in Mo-deficient samples drive a unique volcano-like behavior in the <i>c</i>-lattice parameter and enhance HER activity. The catalyst also demonstrates exceptional stability, showing no degradation after 24 h at 900 mA/cm<sup>2</sup> or after 5000 CV cycles. This work highlights a novel approach to designing high-current-density non-noble-metal HER catalysts by leveraging antibonding interactions and vacancy formation.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 9","pages":"4560–4566"},"PeriodicalIF":18.2000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c02211","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A non-noble-metal electrocatalyst, V1–xMox–δB2 (x = 0–1; δ < 0.2), is introduced to replace costly hydrogen evolution reaction (HER) catalysts, enabling a greener energy economy. This solid solution catalyst includes vacancy-free and Mo-vacancy-containing variants (δmax = 0.16 for x = 0.7). Combining dual active sites and vacancies, it achieves a low overpotential (η1000 = 0.391 V), outperforming Pt/C (η1000 = 0.837 V) at industry-relevant current densities. DFT calculations reveal that strong antibonding metal–boron interactions at the Fermi level in Mo-deficient samples drive a unique volcano-like behavior in the c-lattice parameter and enhance HER activity. The catalyst also demonstrates exceptional stability, showing no degradation after 24 h at 900 mA/cm2 or after 5000 CV cycles. This work highlights a novel approach to designing high-current-density non-noble-metal HER catalysts by leveraging antibonding interactions and vacancy formation.

Abstract Image

反键-空位耦合提高二硼化物的析氢速率
引入了一种非贵金属电催化剂V1-xMox -δB2 (x = 0-1; δ < 0.2),以取代昂贵的析氢反应(HER)催化剂,实现更绿色的能源经济。该固溶体催化剂包括无空位型和含mo空位型(当x = 0.7时δmax = 0.16)。结合双活性位点和空位,在工业相关电流密度下,它实现了低过电位(η1000 = 0.391 V),优于Pt/C (η1000 = 0.837 V)。DFT计算表明,在费米能级上,缺钼样品中的强反键金属-硼相互作用驱动了c晶格参数中独特的火山样行为,并增强了HER活性。该催化剂还表现出优异的稳定性,在900 mA/cm2或5000 CV循环24小时后没有降解。这项工作强调了一种利用反键相互作用和空位形成来设计高电流密度非贵金属HER催化剂的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信